Step |
Hyp |
Ref |
Expression |
1 |
|
acosval |
|- ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) |
2 |
1
|
oveq2d |
|- ( A e. CC -> ( ( _pi / 2 ) - ( arccos ` A ) ) = ( ( _pi / 2 ) - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) ) |
3 |
|
picn |
|- _pi e. CC |
4 |
|
halfcl |
|- ( _pi e. CC -> ( _pi / 2 ) e. CC ) |
5 |
3 4
|
ax-mp |
|- ( _pi / 2 ) e. CC |
6 |
|
asincl |
|- ( A e. CC -> ( arcsin ` A ) e. CC ) |
7 |
|
nncan |
|- ( ( ( _pi / 2 ) e. CC /\ ( arcsin ` A ) e. CC ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( arcsin ` A ) ) |
8 |
5 6 7
|
sylancr |
|- ( A e. CC -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( arcsin ` A ) ) |
9 |
2 8
|
eqtrd |
|- ( A e. CC -> ( ( _pi / 2 ) - ( arccos ` A ) ) = ( arcsin ` A ) ) |
10 |
9
|
fveq2d |
|- ( A e. CC -> ( cos ` ( ( _pi / 2 ) - ( arccos ` A ) ) ) = ( cos ` ( arcsin ` A ) ) ) |
11 |
|
acoscl |
|- ( A e. CC -> ( arccos ` A ) e. CC ) |
12 |
|
coshalfpim |
|- ( ( arccos ` A ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( arccos ` A ) ) ) = ( sin ` ( arccos ` A ) ) ) |
13 |
11 12
|
syl |
|- ( A e. CC -> ( cos ` ( ( _pi / 2 ) - ( arccos ` A ) ) ) = ( sin ` ( arccos ` A ) ) ) |
14 |
|
cosasin |
|- ( A e. CC -> ( cos ` ( arcsin ` A ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |
15 |
10 13 14
|
3eqtr3d |
|- ( A e. CC -> ( sin ` ( arccos ` A ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |