| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acosval |
|- ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) |
| 2 |
1
|
oveq2d |
|- ( A e. CC -> ( ( _pi / 2 ) - ( arccos ` A ) ) = ( ( _pi / 2 ) - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) ) |
| 3 |
|
picn |
|- _pi e. CC |
| 4 |
|
halfcl |
|- ( _pi e. CC -> ( _pi / 2 ) e. CC ) |
| 5 |
3 4
|
ax-mp |
|- ( _pi / 2 ) e. CC |
| 6 |
|
asincl |
|- ( A e. CC -> ( arcsin ` A ) e. CC ) |
| 7 |
|
nncan |
|- ( ( ( _pi / 2 ) e. CC /\ ( arcsin ` A ) e. CC ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( arcsin ` A ) ) |
| 8 |
5 6 7
|
sylancr |
|- ( A e. CC -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( arcsin ` A ) ) |
| 9 |
2 8
|
eqtrd |
|- ( A e. CC -> ( ( _pi / 2 ) - ( arccos ` A ) ) = ( arcsin ` A ) ) |
| 10 |
9
|
fveq2d |
|- ( A e. CC -> ( cos ` ( ( _pi / 2 ) - ( arccos ` A ) ) ) = ( cos ` ( arcsin ` A ) ) ) |
| 11 |
|
acoscl |
|- ( A e. CC -> ( arccos ` A ) e. CC ) |
| 12 |
|
coshalfpim |
|- ( ( arccos ` A ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( arccos ` A ) ) ) = ( sin ` ( arccos ` A ) ) ) |
| 13 |
11 12
|
syl |
|- ( A e. CC -> ( cos ` ( ( _pi / 2 ) - ( arccos ` A ) ) ) = ( sin ` ( arccos ` A ) ) ) |
| 14 |
|
cosasin |
|- ( A e. CC -> ( cos ` ( arcsin ` A ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |
| 15 |
10 13 14
|
3eqtr3d |
|- ( A e. CC -> ( sin ` ( arccos ` A ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |