Step |
Hyp |
Ref |
Expression |
1 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
2 |
|
sinval |
|- ( ( A + B ) e. CC -> ( sin ` ( A + B ) ) = ( ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) / ( 2 x. _i ) ) ) |
3 |
1 2
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( sin ` ( A + B ) ) = ( ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) / ( 2 x. _i ) ) ) |
4 |
|
2cn |
|- 2 e. CC |
5 |
4
|
a1i |
|- ( ( A e. CC /\ B e. CC ) -> 2 e. CC ) |
6 |
|
ax-icn |
|- _i e. CC |
7 |
6
|
a1i |
|- ( ( A e. CC /\ B e. CC ) -> _i e. CC ) |
8 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
9 |
8
|
adantr |
|- ( ( A e. CC /\ B e. CC ) -> ( cos ` A ) e. CC ) |
10 |
|
sincl |
|- ( B e. CC -> ( sin ` B ) e. CC ) |
11 |
10
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( sin ` B ) e. CC ) |
12 |
9 11
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( sin ` B ) ) e. CC ) |
13 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
14 |
13
|
adantr |
|- ( ( A e. CC /\ B e. CC ) -> ( sin ` A ) e. CC ) |
15 |
|
coscl |
|- ( B e. CC -> ( cos ` B ) e. CC ) |
16 |
15
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( cos ` B ) e. CC ) |
17 |
14 16
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( cos ` B ) ) e. CC ) |
18 |
12 17
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) e. CC ) |
19 |
5 7 18
|
mulassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. _i ) x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( 2 x. ( _i x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) ) ) |
20 |
7 12 17
|
adddid |
|- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( ( _i x. ( ( cos ` A ) x. ( sin ` B ) ) ) + ( _i x. ( ( sin ` A ) x. ( cos ` B ) ) ) ) ) |
21 |
7 9 11
|
mul12d |
|- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( cos ` A ) x. ( sin ` B ) ) ) = ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) ) |
22 |
14 16
|
mulcomd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( cos ` B ) ) = ( ( cos ` B ) x. ( sin ` A ) ) ) |
23 |
22
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( sin ` A ) x. ( cos ` B ) ) ) = ( _i x. ( ( cos ` B ) x. ( sin ` A ) ) ) ) |
24 |
7 16 14
|
mul12d |
|- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( cos ` B ) x. ( sin ` A ) ) ) = ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) |
25 |
23 24
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( sin ` A ) x. ( cos ` B ) ) ) = ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) |
26 |
21 25
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. ( ( cos ` A ) x. ( sin ` B ) ) ) + ( _i x. ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) |
27 |
20 26
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) |
28 |
27
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( _i x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
29 |
19 28
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. _i ) x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
30 |
|
mulcl |
|- ( ( _i e. CC /\ ( sin ` B ) e. CC ) -> ( _i x. ( sin ` B ) ) e. CC ) |
31 |
6 11 30
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( sin ` B ) ) e. CC ) |
32 |
9 31
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) e. CC ) |
33 |
|
mulcl |
|- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
34 |
6 14 33
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
35 |
16 34
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) e. CC ) |
36 |
32 35
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) e. CC ) |
37 |
|
mulcl |
|- ( ( 2 e. CC /\ ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) e. CC ) -> ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) e. CC ) |
38 |
4 36 37
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) e. CC ) |
39 |
|
2mulicn |
|- ( 2 x. _i ) e. CC |
40 |
39
|
a1i |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. _i ) e. CC ) |
41 |
|
2muline0 |
|- ( 2 x. _i ) =/= 0 |
42 |
41
|
a1i |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. _i ) =/= 0 ) |
43 |
38 40 18 42
|
divmuld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) / ( 2 x. _i ) ) = ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) <-> ( ( 2 x. _i ) x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) ) |
44 |
29 43
|
mpbird |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) / ( 2 x. _i ) ) = ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) |
45 |
9 16
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
46 |
31 34
|
mulcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) e. CC ) |
47 |
45 46
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) e. CC ) |
48 |
47 36 36
|
pnncand |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) - ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) = ( ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
49 |
|
adddi |
|- ( ( _i e. CC /\ A e. CC /\ B e. CC ) -> ( _i x. ( A + B ) ) = ( ( _i x. A ) + ( _i x. B ) ) ) |
50 |
6 49
|
mp3an1 |
|- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( A + B ) ) = ( ( _i x. A ) + ( _i x. B ) ) ) |
51 |
50
|
fveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( _i x. ( A + B ) ) ) = ( exp ` ( ( _i x. A ) + ( _i x. B ) ) ) ) |
52 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
53 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
54 |
6 52 53
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( _i x. A ) e. CC ) |
55 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
56 |
|
mulcl |
|- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
57 |
6 55 56
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
58 |
|
efadd |
|- ( ( ( _i x. A ) e. CC /\ ( _i x. B ) e. CC ) -> ( exp ` ( ( _i x. A ) + ( _i x. B ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) ) |
59 |
54 57 58
|
syl2anc |
|- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( ( _i x. A ) + ( _i x. B ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) ) |
60 |
|
efival |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
61 |
|
efival |
|- ( B e. CC -> ( exp ` ( _i x. B ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) |
62 |
60 61
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) ) |
63 |
9 34 16 31
|
muladdd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
64 |
62 63
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
65 |
51 59 64
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( _i x. ( A + B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
66 |
|
negicn |
|- -u _i e. CC |
67 |
|
adddi |
|- ( ( -u _i e. CC /\ A e. CC /\ B e. CC ) -> ( -u _i x. ( A + B ) ) = ( ( -u _i x. A ) + ( -u _i x. B ) ) ) |
68 |
66 67
|
mp3an1 |
|- ( ( A e. CC /\ B e. CC ) -> ( -u _i x. ( A + B ) ) = ( ( -u _i x. A ) + ( -u _i x. B ) ) ) |
69 |
68
|
fveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( -u _i x. ( A + B ) ) ) = ( exp ` ( ( -u _i x. A ) + ( -u _i x. B ) ) ) ) |
70 |
|
mulcl |
|- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
71 |
66 52 70
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( -u _i x. A ) e. CC ) |
72 |
|
mulcl |
|- ( ( -u _i e. CC /\ B e. CC ) -> ( -u _i x. B ) e. CC ) |
73 |
66 55 72
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( -u _i x. B ) e. CC ) |
74 |
|
efadd |
|- ( ( ( -u _i x. A ) e. CC /\ ( -u _i x. B ) e. CC ) -> ( exp ` ( ( -u _i x. A ) + ( -u _i x. B ) ) ) = ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) ) |
75 |
71 73 74
|
syl2anc |
|- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( ( -u _i x. A ) + ( -u _i x. B ) ) ) = ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) ) |
76 |
|
efmival |
|- ( A e. CC -> ( exp ` ( -u _i x. A ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
77 |
|
efmival |
|- ( B e. CC -> ( exp ` ( -u _i x. B ) ) = ( ( cos ` B ) - ( _i x. ( sin ` B ) ) ) ) |
78 |
76 77
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) = ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) - ( _i x. ( sin ` B ) ) ) ) ) |
79 |
9 34 16 31
|
mulsubd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) - ( _i x. ( sin ` B ) ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
80 |
78 79
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
81 |
69 75 80
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( -u _i x. ( A + B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
82 |
65 81
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) = ( ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) - ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) ) |
83 |
36
|
2timesd |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) = ( ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
84 |
48 82 83
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
85 |
84
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) / ( 2 x. _i ) ) = ( ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) / ( 2 x. _i ) ) ) |
86 |
17 12
|
addcomd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) = ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) |
87 |
44 85 86
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) / ( 2 x. _i ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) |
88 |
3 87
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( sin ` ( A + B ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) |