| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addcl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) | 
						
							| 2 |  | sinval |  |-  ( ( A + B ) e. CC -> ( sin ` ( A + B ) ) = ( ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) / ( 2 x. _i ) ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( ( A e. CC /\ B e. CC ) -> ( sin ` ( A + B ) ) = ( ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) / ( 2 x. _i ) ) ) | 
						
							| 4 |  | 2cn |  |-  2 e. CC | 
						
							| 5 | 4 | a1i |  |-  ( ( A e. CC /\ B e. CC ) -> 2 e. CC ) | 
						
							| 6 |  | ax-icn |  |-  _i e. CC | 
						
							| 7 | 6 | a1i |  |-  ( ( A e. CC /\ B e. CC ) -> _i e. CC ) | 
						
							| 8 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A e. CC /\ B e. CC ) -> ( cos ` A ) e. CC ) | 
						
							| 10 |  | sincl |  |-  ( B e. CC -> ( sin ` B ) e. CC ) | 
						
							| 11 | 10 | adantl |  |-  ( ( A e. CC /\ B e. CC ) -> ( sin ` B ) e. CC ) | 
						
							| 12 | 9 11 | mulcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( sin ` B ) ) e. CC ) | 
						
							| 13 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 14 | 13 | adantr |  |-  ( ( A e. CC /\ B e. CC ) -> ( sin ` A ) e. CC ) | 
						
							| 15 |  | coscl |  |-  ( B e. CC -> ( cos ` B ) e. CC ) | 
						
							| 16 | 15 | adantl |  |-  ( ( A e. CC /\ B e. CC ) -> ( cos ` B ) e. CC ) | 
						
							| 17 | 14 16 | mulcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( cos ` B ) ) e. CC ) | 
						
							| 18 | 12 17 | addcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) e. CC ) | 
						
							| 19 | 5 7 18 | mulassd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. _i ) x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( 2 x. ( _i x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) ) ) | 
						
							| 20 | 7 12 17 | adddid |  |-  ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( ( _i x. ( ( cos ` A ) x. ( sin ` B ) ) ) + ( _i x. ( ( sin ` A ) x. ( cos ` B ) ) ) ) ) | 
						
							| 21 | 7 9 11 | mul12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( cos ` A ) x. ( sin ` B ) ) ) = ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) ) | 
						
							| 22 | 14 16 | mulcomd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( cos ` B ) ) = ( ( cos ` B ) x. ( sin ` A ) ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( sin ` A ) x. ( cos ` B ) ) ) = ( _i x. ( ( cos ` B ) x. ( sin ` A ) ) ) ) | 
						
							| 24 | 7 16 14 | mul12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( cos ` B ) x. ( sin ` A ) ) ) = ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) | 
						
							| 25 | 23 24 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( sin ` A ) x. ( cos ` B ) ) ) = ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) | 
						
							| 26 | 21 25 | oveq12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( _i x. ( ( cos ` A ) x. ( sin ` B ) ) ) + ( _i x. ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) | 
						
							| 27 | 20 26 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( _i x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) | 
						
							| 29 | 19 28 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. _i ) x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) | 
						
							| 30 |  | mulcl |  |-  ( ( _i e. CC /\ ( sin ` B ) e. CC ) -> ( _i x. ( sin ` B ) ) e. CC ) | 
						
							| 31 | 6 11 30 | sylancr |  |-  ( ( A e. CC /\ B e. CC ) -> ( _i x. ( sin ` B ) ) e. CC ) | 
						
							| 32 | 9 31 | mulcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) e. CC ) | 
						
							| 33 |  | mulcl |  |-  ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) | 
						
							| 34 | 6 14 33 | sylancr |  |-  ( ( A e. CC /\ B e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) | 
						
							| 35 | 16 34 | mulcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) e. CC ) | 
						
							| 36 | 32 35 | addcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) e. CC ) | 
						
							| 37 |  | mulcl |  |-  ( ( 2 e. CC /\ ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) e. CC ) -> ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) e. CC ) | 
						
							| 38 | 4 36 37 | sylancr |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) e. CC ) | 
						
							| 39 |  | 2mulicn |  |-  ( 2 x. _i ) e. CC | 
						
							| 40 | 39 | a1i |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. _i ) e. CC ) | 
						
							| 41 |  | 2muline0 |  |-  ( 2 x. _i ) =/= 0 | 
						
							| 42 | 41 | a1i |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. _i ) =/= 0 ) | 
						
							| 43 | 38 40 18 42 | divmuld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) / ( 2 x. _i ) ) = ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) <-> ( ( 2 x. _i ) x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) ) | 
						
							| 44 | 29 43 | mpbird |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) / ( 2 x. _i ) ) = ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) | 
						
							| 45 | 9 16 | mulcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) | 
						
							| 46 | 31 34 | mulcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) e. CC ) | 
						
							| 47 | 45 46 | addcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) e. CC ) | 
						
							| 48 | 47 36 36 | pnncand |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) - ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) = ( ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) | 
						
							| 49 |  | adddi |  |-  ( ( _i e. CC /\ A e. CC /\ B e. CC ) -> ( _i x. ( A + B ) ) = ( ( _i x. A ) + ( _i x. B ) ) ) | 
						
							| 50 | 6 49 | mp3an1 |  |-  ( ( A e. CC /\ B e. CC ) -> ( _i x. ( A + B ) ) = ( ( _i x. A ) + ( _i x. B ) ) ) | 
						
							| 51 | 50 | fveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( exp ` ( _i x. ( A + B ) ) ) = ( exp ` ( ( _i x. A ) + ( _i x. B ) ) ) ) | 
						
							| 52 |  | simpl |  |-  ( ( A e. CC /\ B e. CC ) -> A e. CC ) | 
						
							| 53 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 54 | 6 52 53 | sylancr |  |-  ( ( A e. CC /\ B e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 55 |  | simpr |  |-  ( ( A e. CC /\ B e. CC ) -> B e. CC ) | 
						
							| 56 |  | mulcl |  |-  ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) | 
						
							| 57 | 6 55 56 | sylancr |  |-  ( ( A e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) | 
						
							| 58 |  | efadd |  |-  ( ( ( _i x. A ) e. CC /\ ( _i x. B ) e. CC ) -> ( exp ` ( ( _i x. A ) + ( _i x. B ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) ) | 
						
							| 59 | 54 57 58 | syl2anc |  |-  ( ( A e. CC /\ B e. CC ) -> ( exp ` ( ( _i x. A ) + ( _i x. B ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) ) | 
						
							| 60 |  | efival |  |-  ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) | 
						
							| 61 |  | efival |  |-  ( B e. CC -> ( exp ` ( _i x. B ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) | 
						
							| 62 | 60 61 | oveqan12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) ) | 
						
							| 63 | 9 34 16 31 | muladdd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) | 
						
							| 64 | 62 63 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) | 
						
							| 65 | 51 59 64 | 3eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( exp ` ( _i x. ( A + B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) | 
						
							| 66 |  | negicn |  |-  -u _i e. CC | 
						
							| 67 |  | adddi |  |-  ( ( -u _i e. CC /\ A e. CC /\ B e. CC ) -> ( -u _i x. ( A + B ) ) = ( ( -u _i x. A ) + ( -u _i x. B ) ) ) | 
						
							| 68 | 66 67 | mp3an1 |  |-  ( ( A e. CC /\ B e. CC ) -> ( -u _i x. ( A + B ) ) = ( ( -u _i x. A ) + ( -u _i x. B ) ) ) | 
						
							| 69 | 68 | fveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( exp ` ( -u _i x. ( A + B ) ) ) = ( exp ` ( ( -u _i x. A ) + ( -u _i x. B ) ) ) ) | 
						
							| 70 |  | mulcl |  |-  ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) | 
						
							| 71 | 66 52 70 | sylancr |  |-  ( ( A e. CC /\ B e. CC ) -> ( -u _i x. A ) e. CC ) | 
						
							| 72 |  | mulcl |  |-  ( ( -u _i e. CC /\ B e. CC ) -> ( -u _i x. B ) e. CC ) | 
						
							| 73 | 66 55 72 | sylancr |  |-  ( ( A e. CC /\ B e. CC ) -> ( -u _i x. B ) e. CC ) | 
						
							| 74 |  | efadd |  |-  ( ( ( -u _i x. A ) e. CC /\ ( -u _i x. B ) e. CC ) -> ( exp ` ( ( -u _i x. A ) + ( -u _i x. B ) ) ) = ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) ) | 
						
							| 75 | 71 73 74 | syl2anc |  |-  ( ( A e. CC /\ B e. CC ) -> ( exp ` ( ( -u _i x. A ) + ( -u _i x. B ) ) ) = ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) ) | 
						
							| 76 |  | efmival |  |-  ( A e. CC -> ( exp ` ( -u _i x. A ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) | 
						
							| 77 |  | efmival |  |-  ( B e. CC -> ( exp ` ( -u _i x. B ) ) = ( ( cos ` B ) - ( _i x. ( sin ` B ) ) ) ) | 
						
							| 78 | 76 77 | oveqan12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) = ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) - ( _i x. ( sin ` B ) ) ) ) ) | 
						
							| 79 | 9 34 16 31 | mulsubd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) - ( _i x. ( sin ` B ) ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) | 
						
							| 80 | 78 79 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) | 
						
							| 81 | 69 75 80 | 3eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( exp ` ( -u _i x. ( A + B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) | 
						
							| 82 | 65 81 | oveq12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) = ( ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) - ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) ) | 
						
							| 83 | 36 | 2timesd |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) = ( ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) | 
						
							| 84 | 48 82 83 | 3eqtr4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) | 
						
							| 85 | 84 | oveq1d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) / ( 2 x. _i ) ) = ( ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) / ( 2 x. _i ) ) ) | 
						
							| 86 | 17 12 | addcomd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) = ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) | 
						
							| 87 | 44 85 86 | 3eqtr4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) / ( 2 x. _i ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) | 
						
							| 88 | 3 87 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( sin ` ( A + B ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) |