Metamath Proof Explorer


Theorem sinbnd2

Description: The sine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Assertion sinbnd2
|- ( A e. RR -> ( sin ` A ) e. ( -u 1 [,] 1 ) )

Proof

Step Hyp Ref Expression
1 resincl
 |-  ( A e. RR -> ( sin ` A ) e. RR )
2 sinbnd
 |-  ( A e. RR -> ( -u 1 <_ ( sin ` A ) /\ ( sin ` A ) <_ 1 ) )
3 2 simpld
 |-  ( A e. RR -> -u 1 <_ ( sin ` A ) )
4 2 simprd
 |-  ( A e. RR -> ( sin ` A ) <_ 1 )
5 neg1rr
 |-  -u 1 e. RR
6 1re
 |-  1 e. RR
7 5 6 elicc2i
 |-  ( ( sin ` A ) e. ( -u 1 [,] 1 ) <-> ( ( sin ` A ) e. RR /\ -u 1 <_ ( sin ` A ) /\ ( sin ` A ) <_ 1 ) )
8 1 3 4 7 syl3anbrc
 |-  ( A e. RR -> ( sin ` A ) e. ( -u 1 [,] 1 ) )