| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
|- 1 e. RR |
| 2 |
|
0lt1 |
|- 0 < 1 |
| 3 |
|
1le1 |
|- 1 <_ 1 |
| 4 |
|
0xr |
|- 0 e. RR* |
| 5 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( 1 e. ( 0 (,] 1 ) <-> ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) ) ) |
| 6 |
4 1 5
|
mp2an |
|- ( 1 e. ( 0 (,] 1 ) <-> ( 1 e. RR /\ 0 < 1 /\ 1 <_ 1 ) ) |
| 7 |
1 2 3 6
|
mpbir3an |
|- 1 e. ( 0 (,] 1 ) |
| 8 |
|
sin01gt0 |
|- ( 1 e. ( 0 (,] 1 ) -> 0 < ( sin ` 1 ) ) |
| 9 |
|
cos01gt0 |
|- ( 1 e. ( 0 (,] 1 ) -> 0 < ( cos ` 1 ) ) |
| 10 |
8 9
|
jca |
|- ( 1 e. ( 0 (,] 1 ) -> ( 0 < ( sin ` 1 ) /\ 0 < ( cos ` 1 ) ) ) |
| 11 |
7 10
|
ax-mp |
|- ( 0 < ( sin ` 1 ) /\ 0 < ( cos ` 1 ) ) |