Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
|
2pos |
|- 0 < 2 |
3 |
1
|
leidi |
|- 2 <_ 2 |
4 |
|
0xr |
|- 0 e. RR* |
5 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 2 e. RR ) -> ( 2 e. ( 0 (,] 2 ) <-> ( 2 e. RR /\ 0 < 2 /\ 2 <_ 2 ) ) ) |
6 |
4 1 5
|
mp2an |
|- ( 2 e. ( 0 (,] 2 ) <-> ( 2 e. RR /\ 0 < 2 /\ 2 <_ 2 ) ) |
7 |
1 2 3 6
|
mpbir3an |
|- 2 e. ( 0 (,] 2 ) |
8 |
|
sin02gt0 |
|- ( 2 e. ( 0 (,] 2 ) -> 0 < ( sin ` 2 ) ) |
9 |
7 8
|
ax-mp |
|- 0 < ( sin ` 2 ) |
10 |
|
cos2bnd |
|- ( -u ( 7 / 9 ) < ( cos ` 2 ) /\ ( cos ` 2 ) < -u ( 1 / 9 ) ) |
11 |
10
|
simpri |
|- ( cos ` 2 ) < -u ( 1 / 9 ) |
12 |
|
9re |
|- 9 e. RR |
13 |
|
9pos |
|- 0 < 9 |
14 |
12 13
|
recgt0ii |
|- 0 < ( 1 / 9 ) |
15 |
12 13
|
gt0ne0ii |
|- 9 =/= 0 |
16 |
12 15
|
rereccli |
|- ( 1 / 9 ) e. RR |
17 |
|
lt0neg2 |
|- ( ( 1 / 9 ) e. RR -> ( 0 < ( 1 / 9 ) <-> -u ( 1 / 9 ) < 0 ) ) |
18 |
16 17
|
ax-mp |
|- ( 0 < ( 1 / 9 ) <-> -u ( 1 / 9 ) < 0 ) |
19 |
14 18
|
mpbi |
|- -u ( 1 / 9 ) < 0 |
20 |
|
recoscl |
|- ( 2 e. RR -> ( cos ` 2 ) e. RR ) |
21 |
1 20
|
ax-mp |
|- ( cos ` 2 ) e. RR |
22 |
16
|
renegcli |
|- -u ( 1 / 9 ) e. RR |
23 |
|
0re |
|- 0 e. RR |
24 |
21 22 23
|
lttri |
|- ( ( ( cos ` 2 ) < -u ( 1 / 9 ) /\ -u ( 1 / 9 ) < 0 ) -> ( cos ` 2 ) < 0 ) |
25 |
11 19 24
|
mp2an |
|- ( cos ` 2 ) < 0 |
26 |
9 25
|
pm3.2i |
|- ( 0 < ( sin ` 2 ) /\ ( cos ` 2 ) < 0 ) |