| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
|- 2 e. RR |
| 2 |
|
2pos |
|- 0 < 2 |
| 3 |
1
|
leidi |
|- 2 <_ 2 |
| 4 |
|
0xr |
|- 0 e. RR* |
| 5 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 2 e. RR ) -> ( 2 e. ( 0 (,] 2 ) <-> ( 2 e. RR /\ 0 < 2 /\ 2 <_ 2 ) ) ) |
| 6 |
4 1 5
|
mp2an |
|- ( 2 e. ( 0 (,] 2 ) <-> ( 2 e. RR /\ 0 < 2 /\ 2 <_ 2 ) ) |
| 7 |
1 2 3 6
|
mpbir3an |
|- 2 e. ( 0 (,] 2 ) |
| 8 |
|
sin02gt0 |
|- ( 2 e. ( 0 (,] 2 ) -> 0 < ( sin ` 2 ) ) |
| 9 |
7 8
|
ax-mp |
|- 0 < ( sin ` 2 ) |
| 10 |
|
cos2bnd |
|- ( -u ( 7 / 9 ) < ( cos ` 2 ) /\ ( cos ` 2 ) < -u ( 1 / 9 ) ) |
| 11 |
10
|
simpri |
|- ( cos ` 2 ) < -u ( 1 / 9 ) |
| 12 |
|
9re |
|- 9 e. RR |
| 13 |
|
9pos |
|- 0 < 9 |
| 14 |
12 13
|
recgt0ii |
|- 0 < ( 1 / 9 ) |
| 15 |
12 13
|
gt0ne0ii |
|- 9 =/= 0 |
| 16 |
12 15
|
rereccli |
|- ( 1 / 9 ) e. RR |
| 17 |
|
lt0neg2 |
|- ( ( 1 / 9 ) e. RR -> ( 0 < ( 1 / 9 ) <-> -u ( 1 / 9 ) < 0 ) ) |
| 18 |
16 17
|
ax-mp |
|- ( 0 < ( 1 / 9 ) <-> -u ( 1 / 9 ) < 0 ) |
| 19 |
14 18
|
mpbi |
|- -u ( 1 / 9 ) < 0 |
| 20 |
|
recoscl |
|- ( 2 e. RR -> ( cos ` 2 ) e. RR ) |
| 21 |
1 20
|
ax-mp |
|- ( cos ` 2 ) e. RR |
| 22 |
16
|
renegcli |
|- -u ( 1 / 9 ) e. RR |
| 23 |
|
0re |
|- 0 e. RR |
| 24 |
21 22 23
|
lttri |
|- ( ( ( cos ` 2 ) < -u ( 1 / 9 ) /\ -u ( 1 / 9 ) < 0 ) -> ( cos ` 2 ) < 0 ) |
| 25 |
11 19 24
|
mp2an |
|- ( cos ` 2 ) < 0 |
| 26 |
9 25
|
pm3.2i |
|- ( 0 < ( sin ` 2 ) /\ ( cos ` 2 ) < 0 ) |