| Step |
Hyp |
Ref |
Expression |
| 1 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 2 |
|
ax-1cn |
|- 1 e. CC |
| 3 |
|
2halves |
|- ( 1 e. CC -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
| 4 |
2 3
|
ax-mp |
|- ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
| 5 |
|
sincosq1eq |
|- ( ( ( 1 / 2 ) e. CC /\ ( 1 / 2 ) e. CC /\ ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) -> ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) = ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) |
| 6 |
1 1 4 5
|
mp3an |
|- ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) = ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) |
| 7 |
6
|
oveq2i |
|- ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) = ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) |
| 8 |
7
|
oveq2i |
|- ( 2 x. ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) ) = ( 2 x. ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) ) |
| 9 |
|
2cn |
|- 2 e. CC |
| 10 |
|
pire |
|- _pi e. RR |
| 11 |
10
|
recni |
|- _pi e. CC |
| 12 |
|
2ne0 |
|- 2 =/= 0 |
| 13 |
2 9 11 9 12 12
|
divmuldivi |
|- ( ( 1 / 2 ) x. ( _pi / 2 ) ) = ( ( 1 x. _pi ) / ( 2 x. 2 ) ) |
| 14 |
11
|
mullidi |
|- ( 1 x. _pi ) = _pi |
| 15 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 16 |
14 15
|
oveq12i |
|- ( ( 1 x. _pi ) / ( 2 x. 2 ) ) = ( _pi / 4 ) |
| 17 |
13 16
|
eqtri |
|- ( ( 1 / 2 ) x. ( _pi / 2 ) ) = ( _pi / 4 ) |
| 18 |
17
|
fveq2i |
|- ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) = ( sin ` ( _pi / 4 ) ) |
| 19 |
18 18
|
oveq12i |
|- ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) = ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) |
| 20 |
19
|
oveq2i |
|- ( 2 x. ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) ) = ( 2 x. ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) |
| 21 |
9 12
|
recidi |
|- ( 2 x. ( 1 / 2 ) ) = 1 |
| 22 |
21
|
oveq1i |
|- ( ( 2 x. ( 1 / 2 ) ) x. ( _pi / 2 ) ) = ( 1 x. ( _pi / 2 ) ) |
| 23 |
|
2re |
|- 2 e. RR |
| 24 |
10 23 12
|
redivcli |
|- ( _pi / 2 ) e. RR |
| 25 |
24
|
recni |
|- ( _pi / 2 ) e. CC |
| 26 |
9 1 25
|
mulassi |
|- ( ( 2 x. ( 1 / 2 ) ) x. ( _pi / 2 ) ) = ( 2 x. ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) |
| 27 |
25
|
mullidi |
|- ( 1 x. ( _pi / 2 ) ) = ( _pi / 2 ) |
| 28 |
22 26 27
|
3eqtr3i |
|- ( 2 x. ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) = ( _pi / 2 ) |
| 29 |
28
|
fveq2i |
|- ( sin ` ( 2 x. ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) = ( sin ` ( _pi / 2 ) ) |
| 30 |
1 25
|
mulcli |
|- ( ( 1 / 2 ) x. ( _pi / 2 ) ) e. CC |
| 31 |
|
sin2t |
|- ( ( ( 1 / 2 ) x. ( _pi / 2 ) ) e. CC -> ( sin ` ( 2 x. ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) = ( 2 x. ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) ) ) |
| 32 |
30 31
|
ax-mp |
|- ( sin ` ( 2 x. ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) = ( 2 x. ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) ) |
| 33 |
|
sinhalfpi |
|- ( sin ` ( _pi / 2 ) ) = 1 |
| 34 |
29 32 33
|
3eqtr3i |
|- ( 2 x. ( ( sin ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) ) ) = 1 |
| 35 |
8 20 34
|
3eqtr3i |
|- ( 2 x. ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) = 1 |
| 36 |
35
|
fveq2i |
|- ( sqrt ` ( 2 x. ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) ) = ( sqrt ` 1 ) |
| 37 |
|
4re |
|- 4 e. RR |
| 38 |
|
4ne0 |
|- 4 =/= 0 |
| 39 |
10 37 38
|
redivcli |
|- ( _pi / 4 ) e. RR |
| 40 |
|
resincl |
|- ( ( _pi / 4 ) e. RR -> ( sin ` ( _pi / 4 ) ) e. RR ) |
| 41 |
39 40
|
ax-mp |
|- ( sin ` ( _pi / 4 ) ) e. RR |
| 42 |
41 41
|
remulcli |
|- ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) e. RR |
| 43 |
|
0le2 |
|- 0 <_ 2 |
| 44 |
41
|
msqge0i |
|- 0 <_ ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) |
| 45 |
23 42 43 44
|
sqrtmulii |
|- ( sqrt ` ( 2 x. ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) ) |
| 46 |
|
sqrt1 |
|- ( sqrt ` 1 ) = 1 |
| 47 |
36 45 46
|
3eqtr3ri |
|- 1 = ( ( sqrt ` 2 ) x. ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) ) |
| 48 |
42
|
sqrtcli |
|- ( 0 <_ ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) -> ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) e. RR ) |
| 49 |
44 48
|
ax-mp |
|- ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) e. RR |
| 50 |
49
|
recni |
|- ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) e. CC |
| 51 |
|
sqrt2re |
|- ( sqrt ` 2 ) e. RR |
| 52 |
51
|
recni |
|- ( sqrt ` 2 ) e. CC |
| 53 |
|
sqrt00 |
|- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( ( sqrt ` 2 ) = 0 <-> 2 = 0 ) ) |
| 54 |
23 43 53
|
mp2an |
|- ( ( sqrt ` 2 ) = 0 <-> 2 = 0 ) |
| 55 |
54
|
necon3bii |
|- ( ( sqrt ` 2 ) =/= 0 <-> 2 =/= 0 ) |
| 56 |
12 55
|
mpbir |
|- ( sqrt ` 2 ) =/= 0 |
| 57 |
52 56
|
pm3.2i |
|- ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) |
| 58 |
|
divmul2 |
|- ( ( 1 e. CC /\ ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) e. CC /\ ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) ) -> ( ( 1 / ( sqrt ` 2 ) ) = ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) <-> 1 = ( ( sqrt ` 2 ) x. ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) ) ) ) |
| 59 |
2 50 57 58
|
mp3an |
|- ( ( 1 / ( sqrt ` 2 ) ) = ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) <-> 1 = ( ( sqrt ` 2 ) x. ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) ) ) |
| 60 |
47 59
|
mpbir |
|- ( 1 / ( sqrt ` 2 ) ) = ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) |
| 61 |
|
0re |
|- 0 e. RR |
| 62 |
|
pipos |
|- 0 < _pi |
| 63 |
|
4pos |
|- 0 < 4 |
| 64 |
10 37 62 63
|
divgt0ii |
|- 0 < ( _pi / 4 ) |
| 65 |
|
1re |
|- 1 e. RR |
| 66 |
|
pigt2lt4 |
|- ( 2 < _pi /\ _pi < 4 ) |
| 67 |
66
|
simpri |
|- _pi < 4 |
| 68 |
10 37 37 63
|
ltdiv1ii |
|- ( _pi < 4 <-> ( _pi / 4 ) < ( 4 / 4 ) ) |
| 69 |
67 68
|
mpbi |
|- ( _pi / 4 ) < ( 4 / 4 ) |
| 70 |
37
|
recni |
|- 4 e. CC |
| 71 |
70 38
|
dividi |
|- ( 4 / 4 ) = 1 |
| 72 |
69 71
|
breqtri |
|- ( _pi / 4 ) < 1 |
| 73 |
39 65 72
|
ltleii |
|- ( _pi / 4 ) <_ 1 |
| 74 |
|
0xr |
|- 0 e. RR* |
| 75 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( ( _pi / 4 ) e. ( 0 (,] 1 ) <-> ( ( _pi / 4 ) e. RR /\ 0 < ( _pi / 4 ) /\ ( _pi / 4 ) <_ 1 ) ) ) |
| 76 |
74 65 75
|
mp2an |
|- ( ( _pi / 4 ) e. ( 0 (,] 1 ) <-> ( ( _pi / 4 ) e. RR /\ 0 < ( _pi / 4 ) /\ ( _pi / 4 ) <_ 1 ) ) |
| 77 |
39 64 73 76
|
mpbir3an |
|- ( _pi / 4 ) e. ( 0 (,] 1 ) |
| 78 |
|
sin01gt0 |
|- ( ( _pi / 4 ) e. ( 0 (,] 1 ) -> 0 < ( sin ` ( _pi / 4 ) ) ) |
| 79 |
77 78
|
ax-mp |
|- 0 < ( sin ` ( _pi / 4 ) ) |
| 80 |
61 41 79
|
ltleii |
|- 0 <_ ( sin ` ( _pi / 4 ) ) |
| 81 |
41
|
sqrtmsqi |
|- ( 0 <_ ( sin ` ( _pi / 4 ) ) -> ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) = ( sin ` ( _pi / 4 ) ) ) |
| 82 |
80 81
|
ax-mp |
|- ( sqrt ` ( ( sin ` ( _pi / 4 ) ) x. ( sin ` ( _pi / 4 ) ) ) ) = ( sin ` ( _pi / 4 ) ) |
| 83 |
60 82
|
eqtr2i |
|- ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) |
| 84 |
60 82
|
eqtri |
|- ( 1 / ( sqrt ` 2 ) ) = ( sin ` ( _pi / 4 ) ) |
| 85 |
17
|
fveq2i |
|- ( cos ` ( ( 1 / 2 ) x. ( _pi / 2 ) ) ) = ( cos ` ( _pi / 4 ) ) |
| 86 |
6 18 85
|
3eqtr3i |
|- ( sin ` ( _pi / 4 ) ) = ( cos ` ( _pi / 4 ) ) |
| 87 |
84 86
|
eqtr2i |
|- ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) |
| 88 |
83 87
|
pm3.2i |
|- ( ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) /\ ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) ) |