Step |
Hyp |
Ref |
Expression |
1 |
|
picn |
|- _pi e. CC |
2 |
|
2cn |
|- 2 e. CC |
3 |
|
2ne0 |
|- 2 =/= 0 |
4 |
1 2 3
|
divcli |
|- ( _pi / 2 ) e. CC |
5 |
|
mulcl |
|- ( ( A e. CC /\ ( _pi / 2 ) e. CC ) -> ( A x. ( _pi / 2 ) ) e. CC ) |
6 |
4 5
|
mpan2 |
|- ( A e. CC -> ( A x. ( _pi / 2 ) ) e. CC ) |
7 |
|
coshalfpim |
|- ( ( A x. ( _pi / 2 ) ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) ) = ( sin ` ( A x. ( _pi / 2 ) ) ) ) |
8 |
6 7
|
syl |
|- ( A e. CC -> ( cos ` ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) ) = ( sin ` ( A x. ( _pi / 2 ) ) ) ) |
9 |
8
|
3ad2ant1 |
|- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( cos ` ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) ) = ( sin ` ( A x. ( _pi / 2 ) ) ) ) |
10 |
|
adddir |
|- ( ( A e. CC /\ B e. CC /\ ( _pi / 2 ) e. CC ) -> ( ( A + B ) x. ( _pi / 2 ) ) = ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) ) |
11 |
4 10
|
mp3an3 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) x. ( _pi / 2 ) ) = ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) ) |
12 |
11
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( A + B ) x. ( _pi / 2 ) ) = ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) ) |
13 |
|
oveq1 |
|- ( ( A + B ) = 1 -> ( ( A + B ) x. ( _pi / 2 ) ) = ( 1 x. ( _pi / 2 ) ) ) |
14 |
4
|
mulid2i |
|- ( 1 x. ( _pi / 2 ) ) = ( _pi / 2 ) |
15 |
13 14
|
eqtrdi |
|- ( ( A + B ) = 1 -> ( ( A + B ) x. ( _pi / 2 ) ) = ( _pi / 2 ) ) |
16 |
15
|
3ad2ant3 |
|- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( A + B ) x. ( _pi / 2 ) ) = ( _pi / 2 ) ) |
17 |
12 16
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) = ( _pi / 2 ) ) |
18 |
|
mulcl |
|- ( ( B e. CC /\ ( _pi / 2 ) e. CC ) -> ( B x. ( _pi / 2 ) ) e. CC ) |
19 |
4 18
|
mpan2 |
|- ( B e. CC -> ( B x. ( _pi / 2 ) ) e. CC ) |
20 |
|
subadd |
|- ( ( ( _pi / 2 ) e. CC /\ ( A x. ( _pi / 2 ) ) e. CC /\ ( B x. ( _pi / 2 ) ) e. CC ) -> ( ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) = ( B x. ( _pi / 2 ) ) <-> ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) = ( _pi / 2 ) ) ) |
21 |
4 6 19 20
|
mp3an3an |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) = ( B x. ( _pi / 2 ) ) <-> ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) = ( _pi / 2 ) ) ) |
22 |
21
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) = ( B x. ( _pi / 2 ) ) <-> ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) = ( _pi / 2 ) ) ) |
23 |
17 22
|
mpbird |
|- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) = ( B x. ( _pi / 2 ) ) ) |
24 |
23
|
fveq2d |
|- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( cos ` ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) ) = ( cos ` ( B x. ( _pi / 2 ) ) ) ) |
25 |
9 24
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( sin ` ( A x. ( _pi / 2 ) ) ) = ( cos ` ( B x. ( _pi / 2 ) ) ) ) |