| Step | Hyp | Ref | Expression | 
						
							| 1 |  | picn |  |-  _pi e. CC | 
						
							| 2 |  | 2cn |  |-  2 e. CC | 
						
							| 3 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 4 | 1 2 3 | divcli |  |-  ( _pi / 2 ) e. CC | 
						
							| 5 |  | mulcl |  |-  ( ( A e. CC /\ ( _pi / 2 ) e. CC ) -> ( A x. ( _pi / 2 ) ) e. CC ) | 
						
							| 6 | 4 5 | mpan2 |  |-  ( A e. CC -> ( A x. ( _pi / 2 ) ) e. CC ) | 
						
							| 7 |  | coshalfpim |  |-  ( ( A x. ( _pi / 2 ) ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) ) = ( sin ` ( A x. ( _pi / 2 ) ) ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( A e. CC -> ( cos ` ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) ) = ( sin ` ( A x. ( _pi / 2 ) ) ) ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( cos ` ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) ) = ( sin ` ( A x. ( _pi / 2 ) ) ) ) | 
						
							| 10 |  | adddir |  |-  ( ( A e. CC /\ B e. CC /\ ( _pi / 2 ) e. CC ) -> ( ( A + B ) x. ( _pi / 2 ) ) = ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) ) | 
						
							| 11 | 4 10 | mp3an3 |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) x. ( _pi / 2 ) ) = ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( A + B ) x. ( _pi / 2 ) ) = ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) ) | 
						
							| 13 |  | oveq1 |  |-  ( ( A + B ) = 1 -> ( ( A + B ) x. ( _pi / 2 ) ) = ( 1 x. ( _pi / 2 ) ) ) | 
						
							| 14 | 4 | mullidi |  |-  ( 1 x. ( _pi / 2 ) ) = ( _pi / 2 ) | 
						
							| 15 | 13 14 | eqtrdi |  |-  ( ( A + B ) = 1 -> ( ( A + B ) x. ( _pi / 2 ) ) = ( _pi / 2 ) ) | 
						
							| 16 | 15 | 3ad2ant3 |  |-  ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( A + B ) x. ( _pi / 2 ) ) = ( _pi / 2 ) ) | 
						
							| 17 | 12 16 | eqtr3d |  |-  ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) = ( _pi / 2 ) ) | 
						
							| 18 |  | mulcl |  |-  ( ( B e. CC /\ ( _pi / 2 ) e. CC ) -> ( B x. ( _pi / 2 ) ) e. CC ) | 
						
							| 19 | 4 18 | mpan2 |  |-  ( B e. CC -> ( B x. ( _pi / 2 ) ) e. CC ) | 
						
							| 20 |  | subadd |  |-  ( ( ( _pi / 2 ) e. CC /\ ( A x. ( _pi / 2 ) ) e. CC /\ ( B x. ( _pi / 2 ) ) e. CC ) -> ( ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) = ( B x. ( _pi / 2 ) ) <-> ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) = ( _pi / 2 ) ) ) | 
						
							| 21 | 4 6 19 20 | mp3an3an |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) = ( B x. ( _pi / 2 ) ) <-> ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) = ( _pi / 2 ) ) ) | 
						
							| 22 | 21 | 3adant3 |  |-  ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) = ( B x. ( _pi / 2 ) ) <-> ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) = ( _pi / 2 ) ) ) | 
						
							| 23 | 17 22 | mpbird |  |-  ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) = ( B x. ( _pi / 2 ) ) ) | 
						
							| 24 | 23 | fveq2d |  |-  ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( cos ` ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) ) = ( cos ` ( B x. ( _pi / 2 ) ) ) ) | 
						
							| 25 | 9 24 | eqtr3d |  |-  ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( sin ` ( A x. ( _pi / 2 ) ) ) = ( cos ` ( B x. ( _pi / 2 ) ) ) ) |