| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0xr |  |-  0 e. RR* | 
						
							| 2 |  | halfpire |  |-  ( _pi / 2 ) e. RR | 
						
							| 3 | 2 | rexri |  |-  ( _pi / 2 ) e. RR* | 
						
							| 4 |  | elioo2 |  |-  ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) ) | 
						
							| 5 | 1 3 4 | mp2an |  |-  ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) | 
						
							| 6 |  | sincosq1lem |  |-  ( ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) -> 0 < ( sin ` A ) ) | 
						
							| 7 |  | resubcl |  |-  ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi / 2 ) - A ) e. RR ) | 
						
							| 8 | 2 7 | mpan |  |-  ( A e. RR -> ( ( _pi / 2 ) - A ) e. RR ) | 
						
							| 9 |  | sincosq1lem |  |-  ( ( ( ( _pi / 2 ) - A ) e. RR /\ 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi / 2 ) - A ) ) ) | 
						
							| 10 | 8 9 | syl3an1 |  |-  ( ( A e. RR /\ 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi / 2 ) - A ) ) ) | 
						
							| 11 | 10 | 3expib |  |-  ( A e. RR -> ( ( 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi / 2 ) - A ) ) ) ) | 
						
							| 12 |  | 0re |  |-  0 e. RR | 
						
							| 13 |  | ltsub13 |  |-  ( ( 0 e. RR /\ ( _pi / 2 ) e. RR /\ A e. RR ) -> ( 0 < ( ( _pi / 2 ) - A ) <-> A < ( ( _pi / 2 ) - 0 ) ) ) | 
						
							| 14 | 12 2 13 | mp3an12 |  |-  ( A e. RR -> ( 0 < ( ( _pi / 2 ) - A ) <-> A < ( ( _pi / 2 ) - 0 ) ) ) | 
						
							| 15 | 2 | recni |  |-  ( _pi / 2 ) e. CC | 
						
							| 16 | 15 | subid1i |  |-  ( ( _pi / 2 ) - 0 ) = ( _pi / 2 ) | 
						
							| 17 | 16 | breq2i |  |-  ( A < ( ( _pi / 2 ) - 0 ) <-> A < ( _pi / 2 ) ) | 
						
							| 18 | 14 17 | bitrdi |  |-  ( A e. RR -> ( 0 < ( ( _pi / 2 ) - A ) <-> A < ( _pi / 2 ) ) ) | 
						
							| 19 |  | ltsub23 |  |-  ( ( ( _pi / 2 ) e. RR /\ A e. RR /\ ( _pi / 2 ) e. RR ) -> ( ( ( _pi / 2 ) - A ) < ( _pi / 2 ) <-> ( ( _pi / 2 ) - ( _pi / 2 ) ) < A ) ) | 
						
							| 20 | 2 2 19 | mp3an13 |  |-  ( A e. RR -> ( ( ( _pi / 2 ) - A ) < ( _pi / 2 ) <-> ( ( _pi / 2 ) - ( _pi / 2 ) ) < A ) ) | 
						
							| 21 | 15 | subidi |  |-  ( ( _pi / 2 ) - ( _pi / 2 ) ) = 0 | 
						
							| 22 | 21 | breq1i |  |-  ( ( ( _pi / 2 ) - ( _pi / 2 ) ) < A <-> 0 < A ) | 
						
							| 23 | 20 22 | bitrdi |  |-  ( A e. RR -> ( ( ( _pi / 2 ) - A ) < ( _pi / 2 ) <-> 0 < A ) ) | 
						
							| 24 | 18 23 | anbi12d |  |-  ( A e. RR -> ( ( 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) <-> ( A < ( _pi / 2 ) /\ 0 < A ) ) ) | 
						
							| 25 | 24 | biancomd |  |-  ( A e. RR -> ( ( 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) <-> ( 0 < A /\ A < ( _pi / 2 ) ) ) ) | 
						
							| 26 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 27 |  | sinhalfpim |  |-  ( A e. CC -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( A e. RR -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) | 
						
							| 29 | 28 | breq2d |  |-  ( A e. RR -> ( 0 < ( sin ` ( ( _pi / 2 ) - A ) ) <-> 0 < ( cos ` A ) ) ) | 
						
							| 30 | 11 25 29 | 3imtr3d |  |-  ( A e. RR -> ( ( 0 < A /\ A < ( _pi / 2 ) ) -> 0 < ( cos ` A ) ) ) | 
						
							| 31 | 30 | 3impib |  |-  ( ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) -> 0 < ( cos ` A ) ) | 
						
							| 32 | 6 31 | jca |  |-  ( ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) | 
						
							| 33 | 5 32 | sylbi |  |-  ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |