Step |
Hyp |
Ref |
Expression |
1 |
|
3re |
|- 3 e. RR |
2 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
3 |
1 2
|
remulcli |
|- ( 3 x. ( _pi / 2 ) ) e. RR |
4 |
3
|
rexri |
|- ( 3 x. ( _pi / 2 ) ) e. RR* |
5 |
|
2re |
|- 2 e. RR |
6 |
|
pire |
|- _pi e. RR |
7 |
5 6
|
remulcli |
|- ( 2 x. _pi ) e. RR |
8 |
7
|
rexri |
|- ( 2 x. _pi ) e. RR* |
9 |
|
elioo2 |
|- ( ( ( 3 x. ( _pi / 2 ) ) e. RR* /\ ( 2 x. _pi ) e. RR* ) -> ( A e. ( ( 3 x. ( _pi / 2 ) ) (,) ( 2 x. _pi ) ) <-> ( A e. RR /\ ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) ) ) |
10 |
4 8 9
|
mp2an |
|- ( A e. ( ( 3 x. ( _pi / 2 ) ) (,) ( 2 x. _pi ) ) <-> ( A e. RR /\ ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) ) |
11 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
12 |
11
|
oveq1i |
|- ( 3 x. ( _pi / 2 ) ) = ( ( 2 + 1 ) x. ( _pi / 2 ) ) |
13 |
|
2cn |
|- 2 e. CC |
14 |
|
ax-1cn |
|- 1 e. CC |
15 |
2
|
recni |
|- ( _pi / 2 ) e. CC |
16 |
13 14 15
|
adddiri |
|- ( ( 2 + 1 ) x. ( _pi / 2 ) ) = ( ( 2 x. ( _pi / 2 ) ) + ( 1 x. ( _pi / 2 ) ) ) |
17 |
6
|
recni |
|- _pi e. CC |
18 |
|
2ne0 |
|- 2 =/= 0 |
19 |
17 13 18
|
divcan2i |
|- ( 2 x. ( _pi / 2 ) ) = _pi |
20 |
15
|
mulid2i |
|- ( 1 x. ( _pi / 2 ) ) = ( _pi / 2 ) |
21 |
19 20
|
oveq12i |
|- ( ( 2 x. ( _pi / 2 ) ) + ( 1 x. ( _pi / 2 ) ) ) = ( _pi + ( _pi / 2 ) ) |
22 |
12 16 21
|
3eqtrri |
|- ( _pi + ( _pi / 2 ) ) = ( 3 x. ( _pi / 2 ) ) |
23 |
22
|
breq1i |
|- ( ( _pi + ( _pi / 2 ) ) < A <-> ( 3 x. ( _pi / 2 ) ) < A ) |
24 |
|
ltaddsub |
|- ( ( _pi e. RR /\ ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi + ( _pi / 2 ) ) < A <-> _pi < ( A - ( _pi / 2 ) ) ) ) |
25 |
6 2 24
|
mp3an12 |
|- ( A e. RR -> ( ( _pi + ( _pi / 2 ) ) < A <-> _pi < ( A - ( _pi / 2 ) ) ) ) |
26 |
23 25
|
bitr3id |
|- ( A e. RR -> ( ( 3 x. ( _pi / 2 ) ) < A <-> _pi < ( A - ( _pi / 2 ) ) ) ) |
27 |
|
ltsubadd |
|- ( ( A e. RR /\ ( _pi / 2 ) e. RR /\ ( 3 x. ( _pi / 2 ) ) e. RR ) -> ( ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) <-> A < ( ( 3 x. ( _pi / 2 ) ) + ( _pi / 2 ) ) ) ) |
28 |
2 3 27
|
mp3an23 |
|- ( A e. RR -> ( ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) <-> A < ( ( 3 x. ( _pi / 2 ) ) + ( _pi / 2 ) ) ) ) |
29 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
30 |
29
|
oveq1i |
|- ( 4 x. ( _pi / 2 ) ) = ( ( 3 + 1 ) x. ( _pi / 2 ) ) |
31 |
1
|
recni |
|- 3 e. CC |
32 |
31 14 15
|
adddiri |
|- ( ( 3 + 1 ) x. ( _pi / 2 ) ) = ( ( 3 x. ( _pi / 2 ) ) + ( 1 x. ( _pi / 2 ) ) ) |
33 |
20
|
oveq2i |
|- ( ( 3 x. ( _pi / 2 ) ) + ( 1 x. ( _pi / 2 ) ) ) = ( ( 3 x. ( _pi / 2 ) ) + ( _pi / 2 ) ) |
34 |
30 32 33
|
3eqtrri |
|- ( ( 3 x. ( _pi / 2 ) ) + ( _pi / 2 ) ) = ( 4 x. ( _pi / 2 ) ) |
35 |
|
4cn |
|- 4 e. CC |
36 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
37 |
|
div12 |
|- ( ( 4 e. CC /\ _pi e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( 4 x. ( _pi / 2 ) ) = ( _pi x. ( 4 / 2 ) ) ) |
38 |
35 17 36 37
|
mp3an |
|- ( 4 x. ( _pi / 2 ) ) = ( _pi x. ( 4 / 2 ) ) |
39 |
|
4d2e2 |
|- ( 4 / 2 ) = 2 |
40 |
39
|
oveq2i |
|- ( _pi x. ( 4 / 2 ) ) = ( _pi x. 2 ) |
41 |
17 13
|
mulcomi |
|- ( _pi x. 2 ) = ( 2 x. _pi ) |
42 |
40 41
|
eqtri |
|- ( _pi x. ( 4 / 2 ) ) = ( 2 x. _pi ) |
43 |
38 42
|
eqtri |
|- ( 4 x. ( _pi / 2 ) ) = ( 2 x. _pi ) |
44 |
34 43
|
eqtri |
|- ( ( 3 x. ( _pi / 2 ) ) + ( _pi / 2 ) ) = ( 2 x. _pi ) |
45 |
44
|
breq2i |
|- ( A < ( ( 3 x. ( _pi / 2 ) ) + ( _pi / 2 ) ) <-> A < ( 2 x. _pi ) ) |
46 |
28 45
|
bitr2di |
|- ( A e. RR -> ( A < ( 2 x. _pi ) <-> ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) ) |
47 |
26 46
|
anbi12d |
|- ( A e. RR -> ( ( ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) <-> ( _pi < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) ) ) |
48 |
|
resubcl |
|- ( ( A e. RR /\ ( _pi / 2 ) e. RR ) -> ( A - ( _pi / 2 ) ) e. RR ) |
49 |
2 48
|
mpan2 |
|- ( A e. RR -> ( A - ( _pi / 2 ) ) e. RR ) |
50 |
6
|
rexri |
|- _pi e. RR* |
51 |
|
elioo2 |
|- ( ( _pi e. RR* /\ ( 3 x. ( _pi / 2 ) ) e. RR* ) -> ( ( A - ( _pi / 2 ) ) e. ( _pi (,) ( 3 x. ( _pi / 2 ) ) ) <-> ( ( A - ( _pi / 2 ) ) e. RR /\ _pi < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) ) ) |
52 |
50 4 51
|
mp2an |
|- ( ( A - ( _pi / 2 ) ) e. ( _pi (,) ( 3 x. ( _pi / 2 ) ) ) <-> ( ( A - ( _pi / 2 ) ) e. RR /\ _pi < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) ) |
53 |
|
sincosq3sgn |
|- ( ( A - ( _pi / 2 ) ) e. ( _pi (,) ( 3 x. ( _pi / 2 ) ) ) -> ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
54 |
52 53
|
sylbir |
|- ( ( ( A - ( _pi / 2 ) ) e. RR /\ _pi < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) -> ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
55 |
49 54
|
syl3an1 |
|- ( ( A e. RR /\ _pi < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) -> ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
56 |
55
|
3expib |
|- ( A e. RR -> ( ( _pi < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) -> ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
57 |
47 56
|
sylbid |
|- ( A e. RR -> ( ( ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) -> ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
58 |
49
|
resincld |
|- ( A e. RR -> ( sin ` ( A - ( _pi / 2 ) ) ) e. RR ) |
59 |
58
|
lt0neg1d |
|- ( A e. RR -> ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 <-> 0 < -u ( sin ` ( A - ( _pi / 2 ) ) ) ) ) |
60 |
59
|
anbi1d |
|- ( A e. RR -> ( ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) <-> ( 0 < -u ( sin ` ( A - ( _pi / 2 ) ) ) /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
61 |
57 60
|
sylibd |
|- ( A e. RR -> ( ( ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) -> ( 0 < -u ( sin ` ( A - ( _pi / 2 ) ) ) /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
62 |
|
recn |
|- ( A e. RR -> A e. CC ) |
63 |
|
pncan3 |
|- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) = A ) |
64 |
15 62 63
|
sylancr |
|- ( A e. RR -> ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) = A ) |
65 |
64
|
fveq2d |
|- ( A e. RR -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` A ) ) |
66 |
49
|
recnd |
|- ( A e. RR -> ( A - ( _pi / 2 ) ) e. CC ) |
67 |
|
coshalfpip |
|- ( ( A - ( _pi / 2 ) ) e. CC -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
68 |
66 67
|
syl |
|- ( A e. RR -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
69 |
65 68
|
eqtr3d |
|- ( A e. RR -> ( cos ` A ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
70 |
69
|
breq2d |
|- ( A e. RR -> ( 0 < ( cos ` A ) <-> 0 < -u ( sin ` ( A - ( _pi / 2 ) ) ) ) ) |
71 |
64
|
fveq2d |
|- ( A e. RR -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( sin ` A ) ) |
72 |
|
sinhalfpip |
|- ( ( A - ( _pi / 2 ) ) e. CC -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
73 |
66 72
|
syl |
|- ( A e. RR -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
74 |
71 73
|
eqtr3d |
|- ( A e. RR -> ( sin ` A ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
75 |
74
|
breq1d |
|- ( A e. RR -> ( ( sin ` A ) < 0 <-> ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
76 |
70 75
|
anbi12d |
|- ( A e. RR -> ( ( 0 < ( cos ` A ) /\ ( sin ` A ) < 0 ) <-> ( 0 < -u ( sin ` ( A - ( _pi / 2 ) ) ) /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
77 |
61 76
|
sylibrd |
|- ( A e. RR -> ( ( ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) -> ( 0 < ( cos ` A ) /\ ( sin ` A ) < 0 ) ) ) |
78 |
77
|
3impib |
|- ( ( A e. RR /\ ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) -> ( 0 < ( cos ` A ) /\ ( sin ` A ) < 0 ) ) |
79 |
78
|
ancomd |
|- ( ( A e. RR /\ ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) -> ( ( sin ` A ) < 0 /\ 0 < ( cos ` A ) ) ) |
80 |
10 79
|
sylbi |
|- ( A e. ( ( 3 x. ( _pi / 2 ) ) (,) ( 2 x. _pi ) ) -> ( ( sin ` A ) < 0 /\ 0 < ( cos ` A ) ) ) |