| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sinval |  |-  ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) | 
						
							| 2 | 1 | eqeq1d |  |-  ( A e. CC -> ( ( sin ` A ) = 0 <-> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = 0 ) ) | 
						
							| 3 |  | ax-icn |  |-  _i e. CC | 
						
							| 4 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 5 | 3 4 | mpan |  |-  ( A e. CC -> ( _i x. A ) e. CC ) | 
						
							| 6 |  | efcl |  |-  ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) | 
						
							| 7 | 5 6 | syl |  |-  ( A e. CC -> ( exp ` ( _i x. A ) ) e. CC ) | 
						
							| 8 |  | negicn |  |-  -u _i e. CC | 
						
							| 9 |  | mulcl |  |-  ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) | 
						
							| 10 | 8 9 | mpan |  |-  ( A e. CC -> ( -u _i x. A ) e. CC ) | 
						
							| 11 |  | efcl |  |-  ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) | 
						
							| 12 | 10 11 | syl |  |-  ( A e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) | 
						
							| 13 | 7 12 | subcld |  |-  ( A e. CC -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) | 
						
							| 14 |  | 2mulicn |  |-  ( 2 x. _i ) e. CC | 
						
							| 15 |  | 2muline0 |  |-  ( 2 x. _i ) =/= 0 | 
						
							| 16 |  | diveq0 |  |-  ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 ) ) | 
						
							| 17 | 14 15 16 | mp3an23 |  |-  ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC -> ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 ) ) | 
						
							| 18 | 13 17 | syl |  |-  ( A e. CC -> ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 ) ) | 
						
							| 19 | 7 12 | subeq0ad |  |-  ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 <-> ( exp ` ( _i x. A ) ) = ( exp ` ( -u _i x. A ) ) ) ) | 
						
							| 20 | 2 18 19 | 3bitrd |  |-  ( A e. CC -> ( ( sin ` A ) = 0 <-> ( exp ` ( _i x. A ) ) = ( exp ` ( -u _i x. A ) ) ) ) | 
						
							| 21 |  | oveq2 |  |-  ( ( exp ` ( _i x. A ) ) = ( exp ` ( -u _i x. A ) ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) | 
						
							| 22 |  | 2cn |  |-  2 e. CC | 
						
							| 23 |  | mul12 |  |-  ( ( _i e. CC /\ 2 e. CC /\ A e. CC ) -> ( _i x. ( 2 x. A ) ) = ( 2 x. ( _i x. A ) ) ) | 
						
							| 24 | 3 22 23 | mp3an12 |  |-  ( A e. CC -> ( _i x. ( 2 x. A ) ) = ( 2 x. ( _i x. A ) ) ) | 
						
							| 25 | 5 | 2timesd |  |-  ( A e. CC -> ( 2 x. ( _i x. A ) ) = ( ( _i x. A ) + ( _i x. A ) ) ) | 
						
							| 26 | 24 25 | eqtrd |  |-  ( A e. CC -> ( _i x. ( 2 x. A ) ) = ( ( _i x. A ) + ( _i x. A ) ) ) | 
						
							| 27 | 26 | fveq2d |  |-  ( A e. CC -> ( exp ` ( _i x. ( 2 x. A ) ) ) = ( exp ` ( ( _i x. A ) + ( _i x. A ) ) ) ) | 
						
							| 28 |  | efadd |  |-  ( ( ( _i x. A ) e. CC /\ ( _i x. A ) e. CC ) -> ( exp ` ( ( _i x. A ) + ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) | 
						
							| 29 | 5 5 28 | syl2anc |  |-  ( A e. CC -> ( exp ` ( ( _i x. A ) + ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) | 
						
							| 30 | 27 29 | eqtr2d |  |-  ( A e. CC -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) = ( exp ` ( _i x. ( 2 x. A ) ) ) ) | 
						
							| 31 |  | efadd |  |-  ( ( ( _i x. A ) e. CC /\ ( -u _i x. A ) e. CC ) -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) | 
						
							| 32 | 5 10 31 | syl2anc |  |-  ( A e. CC -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) | 
						
							| 33 | 3 | negidi |  |-  ( _i + -u _i ) = 0 | 
						
							| 34 | 33 | oveq1i |  |-  ( ( _i + -u _i ) x. A ) = ( 0 x. A ) | 
						
							| 35 |  | adddir |  |-  ( ( _i e. CC /\ -u _i e. CC /\ A e. CC ) -> ( ( _i + -u _i ) x. A ) = ( ( _i x. A ) + ( -u _i x. A ) ) ) | 
						
							| 36 | 3 8 35 | mp3an12 |  |-  ( A e. CC -> ( ( _i + -u _i ) x. A ) = ( ( _i x. A ) + ( -u _i x. A ) ) ) | 
						
							| 37 |  | mul02 |  |-  ( A e. CC -> ( 0 x. A ) = 0 ) | 
						
							| 38 | 34 36 37 | 3eqtr3a |  |-  ( A e. CC -> ( ( _i x. A ) + ( -u _i x. A ) ) = 0 ) | 
						
							| 39 | 38 | fveq2d |  |-  ( A e. CC -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = ( exp ` 0 ) ) | 
						
							| 40 |  | ef0 |  |-  ( exp ` 0 ) = 1 | 
						
							| 41 | 39 40 | eqtrdi |  |-  ( A e. CC -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = 1 ) | 
						
							| 42 | 32 41 | eqtr3d |  |-  ( A e. CC -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) = 1 ) | 
						
							| 43 | 30 42 | eqeq12d |  |-  ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) <-> ( exp ` ( _i x. ( 2 x. A ) ) ) = 1 ) ) | 
						
							| 44 |  | fveq2 |  |-  ( ( exp ` ( _i x. ( 2 x. A ) ) ) = 1 -> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) ) | 
						
							| 45 | 43 44 | biimtrdi |  |-  ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) -> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) ) ) | 
						
							| 46 | 21 45 | syl5 |  |-  ( A e. CC -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( -u _i x. A ) ) -> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) ) ) | 
						
							| 47 | 20 46 | sylbid |  |-  ( A e. CC -> ( ( sin ` A ) = 0 -> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) ) ) | 
						
							| 48 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 49 | 48 | eqeq2i |  |-  ( ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) <-> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = 1 ) | 
						
							| 50 |  | 2re |  |-  2 e. RR | 
						
							| 51 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 52 |  | mulre |  |-  ( ( A e. CC /\ 2 e. RR /\ 2 =/= 0 ) -> ( A e. RR <-> ( 2 x. A ) e. RR ) ) | 
						
							| 53 | 50 51 52 | mp3an23 |  |-  ( A e. CC -> ( A e. RR <-> ( 2 x. A ) e. RR ) ) | 
						
							| 54 |  | mulcl |  |-  ( ( 2 e. CC /\ A e. CC ) -> ( 2 x. A ) e. CC ) | 
						
							| 55 | 22 54 | mpan |  |-  ( A e. CC -> ( 2 x. A ) e. CC ) | 
						
							| 56 |  | absefib |  |-  ( ( 2 x. A ) e. CC -> ( ( 2 x. A ) e. RR <-> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = 1 ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( A e. CC -> ( ( 2 x. A ) e. RR <-> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = 1 ) ) | 
						
							| 58 | 53 57 | bitr2d |  |-  ( A e. CC -> ( ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = 1 <-> A e. RR ) ) | 
						
							| 59 | 49 58 | bitrid |  |-  ( A e. CC -> ( ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) <-> A e. RR ) ) | 
						
							| 60 | 47 59 | sylibd |  |-  ( A e. CC -> ( ( sin ` A ) = 0 -> A e. RR ) ) | 
						
							| 61 | 60 | imp |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> A e. RR ) | 
						
							| 62 |  | pirp |  |-  _pi e. RR+ | 
						
							| 63 |  | modval |  |-  ( ( A e. RR /\ _pi e. RR+ ) -> ( A mod _pi ) = ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) | 
						
							| 64 | 61 62 63 | sylancl |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) = ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) | 
						
							| 65 |  | picn |  |-  _pi e. CC | 
						
							| 66 |  | pire |  |-  _pi e. RR | 
						
							| 67 |  | pipos |  |-  0 < _pi | 
						
							| 68 | 66 67 | gt0ne0ii |  |-  _pi =/= 0 | 
						
							| 69 |  | redivcl |  |-  ( ( A e. RR /\ _pi e. RR /\ _pi =/= 0 ) -> ( A / _pi ) e. RR ) | 
						
							| 70 | 66 68 69 | mp3an23 |  |-  ( A e. RR -> ( A / _pi ) e. RR ) | 
						
							| 71 | 61 70 | syl |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A / _pi ) e. RR ) | 
						
							| 72 | 71 | flcld |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( |_ ` ( A / _pi ) ) e. ZZ ) | 
						
							| 73 | 72 | zcnd |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( |_ ` ( A / _pi ) ) e. CC ) | 
						
							| 74 |  | mulcl |  |-  ( ( _pi e. CC /\ ( |_ ` ( A / _pi ) ) e. CC ) -> ( _pi x. ( |_ ` ( A / _pi ) ) ) e. CC ) | 
						
							| 75 | 65 73 74 | sylancr |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( _pi x. ( |_ ` ( A / _pi ) ) ) e. CC ) | 
						
							| 76 |  | negsub |  |-  ( ( A e. CC /\ ( _pi x. ( |_ ` ( A / _pi ) ) ) e. CC ) -> ( A + -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) = ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) | 
						
							| 77 | 75 76 | syldan |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A + -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) = ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) | 
						
							| 78 |  | mulcom |  |-  ( ( _pi e. CC /\ ( |_ ` ( A / _pi ) ) e. CC ) -> ( _pi x. ( |_ ` ( A / _pi ) ) ) = ( ( |_ ` ( A / _pi ) ) x. _pi ) ) | 
						
							| 79 | 65 73 78 | sylancr |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( _pi x. ( |_ ` ( A / _pi ) ) ) = ( ( |_ ` ( A / _pi ) ) x. _pi ) ) | 
						
							| 80 | 79 | negeqd |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -u ( _pi x. ( |_ ` ( A / _pi ) ) ) = -u ( ( |_ ` ( A / _pi ) ) x. _pi ) ) | 
						
							| 81 |  | mulneg1 |  |-  ( ( ( |_ ` ( A / _pi ) ) e. CC /\ _pi e. CC ) -> ( -u ( |_ ` ( A / _pi ) ) x. _pi ) = -u ( ( |_ ` ( A / _pi ) ) x. _pi ) ) | 
						
							| 82 | 73 65 81 | sylancl |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( -u ( |_ ` ( A / _pi ) ) x. _pi ) = -u ( ( |_ ` ( A / _pi ) ) x. _pi ) ) | 
						
							| 83 | 80 82 | eqtr4d |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -u ( _pi x. ( |_ ` ( A / _pi ) ) ) = ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) | 
						
							| 84 | 83 | oveq2d |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A + -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) = ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) | 
						
							| 85 | 64 77 84 | 3eqtr2d |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) = ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) | 
						
							| 86 | 85 | fveq2d |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( sin ` ( A mod _pi ) ) = ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) | 
						
							| 87 | 86 | fveq2d |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) = ( abs ` ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) ) | 
						
							| 88 | 72 | znegcld |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -u ( |_ ` ( A / _pi ) ) e. ZZ ) | 
						
							| 89 |  | abssinper |  |-  ( ( A e. CC /\ -u ( |_ ` ( A / _pi ) ) e. ZZ ) -> ( abs ` ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) | 
						
							| 90 | 88 89 | syldan |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) | 
						
							| 91 |  | simpr |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( sin ` A ) = 0 ) | 
						
							| 92 | 91 | fveq2d |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` A ) ) = ( abs ` 0 ) ) | 
						
							| 93 | 87 90 92 | 3eqtrd |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) = ( abs ` 0 ) ) | 
						
							| 94 |  | abs0 |  |-  ( abs ` 0 ) = 0 | 
						
							| 95 | 93 94 | eqtrdi |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) = 0 ) | 
						
							| 96 |  | modcl |  |-  ( ( A e. RR /\ _pi e. RR+ ) -> ( A mod _pi ) e. RR ) | 
						
							| 97 | 61 62 96 | sylancl |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) e. RR ) | 
						
							| 98 |  | modlt |  |-  ( ( A e. RR /\ _pi e. RR+ ) -> ( A mod _pi ) < _pi ) | 
						
							| 99 | 61 62 98 | sylancl |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) < _pi ) | 
						
							| 100 | 97 99 | jca |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) ) | 
						
							| 101 | 100 | biantrurd |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 < ( A mod _pi ) <-> ( ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) /\ 0 < ( A mod _pi ) ) ) ) | 
						
							| 102 |  | 0re |  |-  0 e. RR | 
						
							| 103 |  | rexr |  |-  ( 0 e. RR -> 0 e. RR* ) | 
						
							| 104 |  | rexr |  |-  ( _pi e. RR -> _pi e. RR* ) | 
						
							| 105 |  | elioo2 |  |-  ( ( 0 e. RR* /\ _pi e. RR* ) -> ( ( A mod _pi ) e. ( 0 (,) _pi ) <-> ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) ) ) | 
						
							| 106 | 103 104 105 | syl2an |  |-  ( ( 0 e. RR /\ _pi e. RR ) -> ( ( A mod _pi ) e. ( 0 (,) _pi ) <-> ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) ) ) | 
						
							| 107 | 102 66 106 | mp2an |  |-  ( ( A mod _pi ) e. ( 0 (,) _pi ) <-> ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) ) | 
						
							| 108 |  | 3anan32 |  |-  ( ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) <-> ( ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) /\ 0 < ( A mod _pi ) ) ) | 
						
							| 109 | 107 108 | bitri |  |-  ( ( A mod _pi ) e. ( 0 (,) _pi ) <-> ( ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) /\ 0 < ( A mod _pi ) ) ) | 
						
							| 110 | 101 109 | bitr4di |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 < ( A mod _pi ) <-> ( A mod _pi ) e. ( 0 (,) _pi ) ) ) | 
						
							| 111 |  | sinq12gt0 |  |-  ( ( A mod _pi ) e. ( 0 (,) _pi ) -> 0 < ( sin ` ( A mod _pi ) ) ) | 
						
							| 112 |  | elioore |  |-  ( ( A mod _pi ) e. ( 0 (,) _pi ) -> ( A mod _pi ) e. RR ) | 
						
							| 113 | 112 | resincld |  |-  ( ( A mod _pi ) e. ( 0 (,) _pi ) -> ( sin ` ( A mod _pi ) ) e. RR ) | 
						
							| 114 |  | ltle |  |-  ( ( 0 e. RR /\ ( sin ` ( A mod _pi ) ) e. RR ) -> ( 0 < ( sin ` ( A mod _pi ) ) -> 0 <_ ( sin ` ( A mod _pi ) ) ) ) | 
						
							| 115 | 102 113 114 | sylancr |  |-  ( ( A mod _pi ) e. ( 0 (,) _pi ) -> ( 0 < ( sin ` ( A mod _pi ) ) -> 0 <_ ( sin ` ( A mod _pi ) ) ) ) | 
						
							| 116 | 111 115 | mpd |  |-  ( ( A mod _pi ) e. ( 0 (,) _pi ) -> 0 <_ ( sin ` ( A mod _pi ) ) ) | 
						
							| 117 | 113 116 | absidd |  |-  ( ( A mod _pi ) e. ( 0 (,) _pi ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) = ( sin ` ( A mod _pi ) ) ) | 
						
							| 118 | 111 117 | breqtrrd |  |-  ( ( A mod _pi ) e. ( 0 (,) _pi ) -> 0 < ( abs ` ( sin ` ( A mod _pi ) ) ) ) | 
						
							| 119 | 110 118 | biimtrdi |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 < ( A mod _pi ) -> 0 < ( abs ` ( sin ` ( A mod _pi ) ) ) ) ) | 
						
							| 120 |  | ltne |  |-  ( ( 0 e. RR /\ 0 < ( abs ` ( sin ` ( A mod _pi ) ) ) ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) =/= 0 ) | 
						
							| 121 | 102 120 | mpan |  |-  ( 0 < ( abs ` ( sin ` ( A mod _pi ) ) ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) =/= 0 ) | 
						
							| 122 | 119 121 | syl6 |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 < ( A mod _pi ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) =/= 0 ) ) | 
						
							| 123 | 122 | necon2bd |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( abs ` ( sin ` ( A mod _pi ) ) ) = 0 -> -. 0 < ( A mod _pi ) ) ) | 
						
							| 124 | 95 123 | mpd |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -. 0 < ( A mod _pi ) ) | 
						
							| 125 |  | modge0 |  |-  ( ( A e. RR /\ _pi e. RR+ ) -> 0 <_ ( A mod _pi ) ) | 
						
							| 126 | 61 62 125 | sylancl |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> 0 <_ ( A mod _pi ) ) | 
						
							| 127 |  | leloe |  |-  ( ( 0 e. RR /\ ( A mod _pi ) e. RR ) -> ( 0 <_ ( A mod _pi ) <-> ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) ) ) | 
						
							| 128 | 102 97 127 | sylancr |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 <_ ( A mod _pi ) <-> ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) ) ) | 
						
							| 129 | 126 128 | mpbid |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) ) | 
						
							| 130 | 129 | ord |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( -. 0 < ( A mod _pi ) -> 0 = ( A mod _pi ) ) ) | 
						
							| 131 | 124 130 | mpd |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> 0 = ( A mod _pi ) ) | 
						
							| 132 | 131 | eqcomd |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) = 0 ) | 
						
							| 133 |  | mod0 |  |-  ( ( A e. RR /\ _pi e. RR+ ) -> ( ( A mod _pi ) = 0 <-> ( A / _pi ) e. ZZ ) ) | 
						
							| 134 | 61 62 133 | sylancl |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( A mod _pi ) = 0 <-> ( A / _pi ) e. ZZ ) ) | 
						
							| 135 | 132 134 | mpbid |  |-  ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A / _pi ) e. ZZ ) | 
						
							| 136 |  | divcan1 |  |-  ( ( A e. CC /\ _pi e. CC /\ _pi =/= 0 ) -> ( ( A / _pi ) x. _pi ) = A ) | 
						
							| 137 | 65 68 136 | mp3an23 |  |-  ( A e. CC -> ( ( A / _pi ) x. _pi ) = A ) | 
						
							| 138 | 137 | fveq2d |  |-  ( A e. CC -> ( sin ` ( ( A / _pi ) x. _pi ) ) = ( sin ` A ) ) | 
						
							| 139 |  | sinkpi |  |-  ( ( A / _pi ) e. ZZ -> ( sin ` ( ( A / _pi ) x. _pi ) ) = 0 ) | 
						
							| 140 | 138 139 | sylan9req |  |-  ( ( A e. CC /\ ( A / _pi ) e. ZZ ) -> ( sin ` A ) = 0 ) | 
						
							| 141 | 135 140 | impbida |  |-  ( A e. CC -> ( ( sin ` A ) = 0 <-> ( A / _pi ) e. ZZ ) ) |