Metamath Proof Explorer


Theorem sinhalfpi

Description: The sine of _pi / 2 is 1. (Contributed by Paul Chapman, 23-Jan-2008)

Ref Expression
Assertion sinhalfpi
|- ( sin ` ( _pi / 2 ) ) = 1

Proof

Step Hyp Ref Expression
1 sinhalfpilem
 |-  ( ( sin ` ( _pi / 2 ) ) = 1 /\ ( cos ` ( _pi / 2 ) ) = 0 )
2 1 simpli
 |-  ( sin ` ( _pi / 2 ) ) = 1