| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0lt1 |
|- 0 < 1 |
| 2 |
|
0re |
|- 0 e. RR |
| 3 |
|
1re |
|- 1 e. RR |
| 4 |
2 3
|
ltnsymi |
|- ( 0 < 1 -> -. 1 < 0 ) |
| 5 |
1 4
|
ax-mp |
|- -. 1 < 0 |
| 6 |
|
lt0neg1 |
|- ( 1 e. RR -> ( 1 < 0 <-> 0 < -u 1 ) ) |
| 7 |
3 6
|
ax-mp |
|- ( 1 < 0 <-> 0 < -u 1 ) |
| 8 |
5 7
|
mtbi |
|- -. 0 < -u 1 |
| 9 |
|
pire |
|- _pi e. RR |
| 10 |
9
|
rehalfcli |
|- ( _pi / 2 ) e. RR |
| 11 |
|
2re |
|- 2 e. RR |
| 12 |
|
pipos |
|- 0 < _pi |
| 13 |
|
2pos |
|- 0 < 2 |
| 14 |
9 11 12 13
|
divgt0ii |
|- 0 < ( _pi / 2 ) |
| 15 |
|
4re |
|- 4 e. RR |
| 16 |
|
pigt2lt4 |
|- ( 2 < _pi /\ _pi < 4 ) |
| 17 |
16
|
simpri |
|- _pi < 4 |
| 18 |
9 15 17
|
ltleii |
|- _pi <_ 4 |
| 19 |
11 13
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 20 |
|
ledivmul |
|- ( ( _pi e. RR /\ 2 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( _pi / 2 ) <_ 2 <-> _pi <_ ( 2 x. 2 ) ) ) |
| 21 |
9 11 19 20
|
mp3an |
|- ( ( _pi / 2 ) <_ 2 <-> _pi <_ ( 2 x. 2 ) ) |
| 22 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 23 |
22
|
breq2i |
|- ( _pi <_ ( 2 x. 2 ) <-> _pi <_ 4 ) |
| 24 |
21 23
|
bitr2i |
|- ( _pi <_ 4 <-> ( _pi / 2 ) <_ 2 ) |
| 25 |
18 24
|
mpbi |
|- ( _pi / 2 ) <_ 2 |
| 26 |
|
0xr |
|- 0 e. RR* |
| 27 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 2 e. RR ) -> ( ( _pi / 2 ) e. ( 0 (,] 2 ) <-> ( ( _pi / 2 ) e. RR /\ 0 < ( _pi / 2 ) /\ ( _pi / 2 ) <_ 2 ) ) ) |
| 28 |
26 11 27
|
mp2an |
|- ( ( _pi / 2 ) e. ( 0 (,] 2 ) <-> ( ( _pi / 2 ) e. RR /\ 0 < ( _pi / 2 ) /\ ( _pi / 2 ) <_ 2 ) ) |
| 29 |
10 14 25 28
|
mpbir3an |
|- ( _pi / 2 ) e. ( 0 (,] 2 ) |
| 30 |
|
sin02gt0 |
|- ( ( _pi / 2 ) e. ( 0 (,] 2 ) -> 0 < ( sin ` ( _pi / 2 ) ) ) |
| 31 |
29 30
|
ax-mp |
|- 0 < ( sin ` ( _pi / 2 ) ) |
| 32 |
|
breq2 |
|- ( ( sin ` ( _pi / 2 ) ) = -u 1 -> ( 0 < ( sin ` ( _pi / 2 ) ) <-> 0 < -u 1 ) ) |
| 33 |
31 32
|
mpbii |
|- ( ( sin ` ( _pi / 2 ) ) = -u 1 -> 0 < -u 1 ) |
| 34 |
8 33
|
mto |
|- -. ( sin ` ( _pi / 2 ) ) = -u 1 |
| 35 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 36 |
|
resincl |
|- ( ( _pi / 2 ) e. RR -> ( sin ` ( _pi / 2 ) ) e. RR ) |
| 37 |
10 36
|
ax-mp |
|- ( sin ` ( _pi / 2 ) ) e. RR |
| 38 |
37 31
|
gt0ne0ii |
|- ( sin ` ( _pi / 2 ) ) =/= 0 |
| 39 |
38
|
neii |
|- -. ( sin ` ( _pi / 2 ) ) = 0 |
| 40 |
|
2ne0 |
|- 2 =/= 0 |
| 41 |
40
|
neii |
|- -. 2 = 0 |
| 42 |
9
|
recni |
|- _pi e. CC |
| 43 |
|
2cn |
|- 2 e. CC |
| 44 |
42 43 40
|
divcan2i |
|- ( 2 x. ( _pi / 2 ) ) = _pi |
| 45 |
44
|
fveq2i |
|- ( sin ` ( 2 x. ( _pi / 2 ) ) ) = ( sin ` _pi ) |
| 46 |
10
|
recni |
|- ( _pi / 2 ) e. CC |
| 47 |
|
sin2t |
|- ( ( _pi / 2 ) e. CC -> ( sin ` ( 2 x. ( _pi / 2 ) ) ) = ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) ) |
| 48 |
46 47
|
ax-mp |
|- ( sin ` ( 2 x. ( _pi / 2 ) ) ) = ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) |
| 49 |
45 48
|
eqtr3i |
|- ( sin ` _pi ) = ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) |
| 50 |
|
sinpi |
|- ( sin ` _pi ) = 0 |
| 51 |
49 50
|
eqtr3i |
|- ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) = 0 |
| 52 |
|
sincl |
|- ( ( _pi / 2 ) e. CC -> ( sin ` ( _pi / 2 ) ) e. CC ) |
| 53 |
46 52
|
ax-mp |
|- ( sin ` ( _pi / 2 ) ) e. CC |
| 54 |
|
coscl |
|- ( ( _pi / 2 ) e. CC -> ( cos ` ( _pi / 2 ) ) e. CC ) |
| 55 |
46 54
|
ax-mp |
|- ( cos ` ( _pi / 2 ) ) e. CC |
| 56 |
53 55
|
mulcli |
|- ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) e. CC |
| 57 |
43 56
|
mul0ori |
|- ( ( 2 x. ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) ) = 0 <-> ( 2 = 0 \/ ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) = 0 ) ) |
| 58 |
51 57
|
mpbi |
|- ( 2 = 0 \/ ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) = 0 ) |
| 59 |
41 58
|
mtpor |
|- ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) = 0 |
| 60 |
53 55
|
mul0ori |
|- ( ( ( sin ` ( _pi / 2 ) ) x. ( cos ` ( _pi / 2 ) ) ) = 0 <-> ( ( sin ` ( _pi / 2 ) ) = 0 \/ ( cos ` ( _pi / 2 ) ) = 0 ) ) |
| 61 |
59 60
|
mpbi |
|- ( ( sin ` ( _pi / 2 ) ) = 0 \/ ( cos ` ( _pi / 2 ) ) = 0 ) |
| 62 |
39 61
|
mtpor |
|- ( cos ` ( _pi / 2 ) ) = 0 |
| 63 |
62
|
oveq1i |
|- ( ( cos ` ( _pi / 2 ) ) ^ 2 ) = ( 0 ^ 2 ) |
| 64 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
| 65 |
63 64
|
eqtri |
|- ( ( cos ` ( _pi / 2 ) ) ^ 2 ) = 0 |
| 66 |
65
|
oveq2i |
|- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) = ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + 0 ) |
| 67 |
|
sincossq |
|- ( ( _pi / 2 ) e. CC -> ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) = 1 ) |
| 68 |
46 67
|
ax-mp |
|- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + ( ( cos ` ( _pi / 2 ) ) ^ 2 ) ) = 1 |
| 69 |
66 68
|
eqtr3i |
|- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + 0 ) = 1 |
| 70 |
53
|
sqcli |
|- ( ( sin ` ( _pi / 2 ) ) ^ 2 ) e. CC |
| 71 |
70
|
addridi |
|- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) + 0 ) = ( ( sin ` ( _pi / 2 ) ) ^ 2 ) |
| 72 |
35 69 71
|
3eqtr2ri |
|- ( ( sin ` ( _pi / 2 ) ) ^ 2 ) = ( 1 ^ 2 ) |
| 73 |
|
ax-1cn |
|- 1 e. CC |
| 74 |
53 73
|
sqeqori |
|- ( ( ( sin ` ( _pi / 2 ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( ( sin ` ( _pi / 2 ) ) = 1 \/ ( sin ` ( _pi / 2 ) ) = -u 1 ) ) |
| 75 |
72 74
|
mpbi |
|- ( ( sin ` ( _pi / 2 ) ) = 1 \/ ( sin ` ( _pi / 2 ) ) = -u 1 ) |
| 76 |
75
|
ori |
|- ( -. ( sin ` ( _pi / 2 ) ) = 1 -> ( sin ` ( _pi / 2 ) ) = -u 1 ) |
| 77 |
34 76
|
mt3 |
|- ( sin ` ( _pi / 2 ) ) = 1 |
| 78 |
77 62
|
pm3.2i |
|- ( ( sin ` ( _pi / 2 ) ) = 1 /\ ( cos ` ( _pi / 2 ) ) = 0 ) |