Step |
Hyp |
Ref |
Expression |
1 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
2 |
1
|
recni |
|- ( _pi / 2 ) e. CC |
3 |
|
sinsub |
|- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( ( ( sin ` ( _pi / 2 ) ) x. ( cos ` A ) ) - ( ( cos ` ( _pi / 2 ) ) x. ( sin ` A ) ) ) ) |
4 |
2 3
|
mpan |
|- ( A e. CC -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( ( ( sin ` ( _pi / 2 ) ) x. ( cos ` A ) ) - ( ( cos ` ( _pi / 2 ) ) x. ( sin ` A ) ) ) ) |
5 |
|
sinhalfpi |
|- ( sin ` ( _pi / 2 ) ) = 1 |
6 |
5
|
oveq1i |
|- ( ( sin ` ( _pi / 2 ) ) x. ( cos ` A ) ) = ( 1 x. ( cos ` A ) ) |
7 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
8 |
7
|
mulid2d |
|- ( A e. CC -> ( 1 x. ( cos ` A ) ) = ( cos ` A ) ) |
9 |
6 8
|
eqtrid |
|- ( A e. CC -> ( ( sin ` ( _pi / 2 ) ) x. ( cos ` A ) ) = ( cos ` A ) ) |
10 |
|
coshalfpi |
|- ( cos ` ( _pi / 2 ) ) = 0 |
11 |
10
|
oveq1i |
|- ( ( cos ` ( _pi / 2 ) ) x. ( sin ` A ) ) = ( 0 x. ( sin ` A ) ) |
12 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
13 |
12
|
mul02d |
|- ( A e. CC -> ( 0 x. ( sin ` A ) ) = 0 ) |
14 |
11 13
|
eqtrid |
|- ( A e. CC -> ( ( cos ` ( _pi / 2 ) ) x. ( sin ` A ) ) = 0 ) |
15 |
9 14
|
oveq12d |
|- ( A e. CC -> ( ( ( sin ` ( _pi / 2 ) ) x. ( cos ` A ) ) - ( ( cos ` ( _pi / 2 ) ) x. ( sin ` A ) ) ) = ( ( cos ` A ) - 0 ) ) |
16 |
7
|
subid1d |
|- ( A e. CC -> ( ( cos ` A ) - 0 ) = ( cos ` A ) ) |
17 |
4 15 16
|
3eqtrd |
|- ( A e. CC -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |