| Step | Hyp | Ref | Expression | 
						
							| 1 |  | halfpire |  |-  ( _pi / 2 ) e. RR | 
						
							| 2 | 1 | recni |  |-  ( _pi / 2 ) e. CC | 
						
							| 3 |  | sinsub |  |-  ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( ( ( sin ` ( _pi / 2 ) ) x. ( cos ` A ) ) - ( ( cos ` ( _pi / 2 ) ) x. ( sin ` A ) ) ) ) | 
						
							| 4 | 2 3 | mpan |  |-  ( A e. CC -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( ( ( sin ` ( _pi / 2 ) ) x. ( cos ` A ) ) - ( ( cos ` ( _pi / 2 ) ) x. ( sin ` A ) ) ) ) | 
						
							| 5 |  | sinhalfpi |  |-  ( sin ` ( _pi / 2 ) ) = 1 | 
						
							| 6 | 5 | oveq1i |  |-  ( ( sin ` ( _pi / 2 ) ) x. ( cos ` A ) ) = ( 1 x. ( cos ` A ) ) | 
						
							| 7 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 8 | 7 | mullidd |  |-  ( A e. CC -> ( 1 x. ( cos ` A ) ) = ( cos ` A ) ) | 
						
							| 9 | 6 8 | eqtrid |  |-  ( A e. CC -> ( ( sin ` ( _pi / 2 ) ) x. ( cos ` A ) ) = ( cos ` A ) ) | 
						
							| 10 |  | coshalfpi |  |-  ( cos ` ( _pi / 2 ) ) = 0 | 
						
							| 11 | 10 | oveq1i |  |-  ( ( cos ` ( _pi / 2 ) ) x. ( sin ` A ) ) = ( 0 x. ( sin ` A ) ) | 
						
							| 12 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 13 | 12 | mul02d |  |-  ( A e. CC -> ( 0 x. ( sin ` A ) ) = 0 ) | 
						
							| 14 | 11 13 | eqtrid |  |-  ( A e. CC -> ( ( cos ` ( _pi / 2 ) ) x. ( sin ` A ) ) = 0 ) | 
						
							| 15 | 9 14 | oveq12d |  |-  ( A e. CC -> ( ( ( sin ` ( _pi / 2 ) ) x. ( cos ` A ) ) - ( ( cos ` ( _pi / 2 ) ) x. ( sin ` A ) ) ) = ( ( cos ` A ) - 0 ) ) | 
						
							| 16 | 7 | subid1d |  |-  ( A e. CC -> ( ( cos ` A ) - 0 ) = ( cos ` A ) ) | 
						
							| 17 | 4 15 16 | 3eqtrd |  |-  ( A e. CC -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |