| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn |  |-  ( K e. ZZ -> K e. CC ) | 
						
							| 2 |  | picn |  |-  _pi e. CC | 
						
							| 3 |  | mulcl |  |-  ( ( K e. CC /\ _pi e. CC ) -> ( K x. _pi ) e. CC ) | 
						
							| 4 | 1 2 3 | sylancl |  |-  ( K e. ZZ -> ( K x. _pi ) e. CC ) | 
						
							| 5 | 4 | addlidd |  |-  ( K e. ZZ -> ( 0 + ( K x. _pi ) ) = ( K x. _pi ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( K e. ZZ -> ( sin ` ( 0 + ( K x. _pi ) ) ) = ( sin ` ( K x. _pi ) ) ) | 
						
							| 7 |  | 0cn |  |-  0 e. CC | 
						
							| 8 |  | addcl |  |-  ( ( 0 e. CC /\ ( K x. _pi ) e. CC ) -> ( 0 + ( K x. _pi ) ) e. CC ) | 
						
							| 9 | 7 4 8 | sylancr |  |-  ( K e. ZZ -> ( 0 + ( K x. _pi ) ) e. CC ) | 
						
							| 10 | 9 | sincld |  |-  ( K e. ZZ -> ( sin ` ( 0 + ( K x. _pi ) ) ) e. CC ) | 
						
							| 11 |  | abssinper |  |-  ( ( 0 e. CC /\ K e. ZZ ) -> ( abs ` ( sin ` ( 0 + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` 0 ) ) ) | 
						
							| 12 | 7 11 | mpan |  |-  ( K e. ZZ -> ( abs ` ( sin ` ( 0 + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` 0 ) ) ) | 
						
							| 13 |  | sin0 |  |-  ( sin ` 0 ) = 0 | 
						
							| 14 | 13 | fveq2i |  |-  ( abs ` ( sin ` 0 ) ) = ( abs ` 0 ) | 
						
							| 15 |  | abs0 |  |-  ( abs ` 0 ) = 0 | 
						
							| 16 | 14 15 | eqtri |  |-  ( abs ` ( sin ` 0 ) ) = 0 | 
						
							| 17 | 12 16 | eqtrdi |  |-  ( K e. ZZ -> ( abs ` ( sin ` ( 0 + ( K x. _pi ) ) ) ) = 0 ) | 
						
							| 18 | 10 17 | abs00d |  |-  ( K e. ZZ -> ( sin ` ( 0 + ( K x. _pi ) ) ) = 0 ) | 
						
							| 19 | 6 18 | eqtr3d |  |-  ( K e. ZZ -> ( sin ` ( K x. _pi ) ) = 0 ) |