| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. RR+ /\ 1 < A ) -> A e. RR ) | 
						
							| 3 | 2 | resincld |  |-  ( ( A e. RR+ /\ 1 < A ) -> ( sin ` A ) e. RR ) | 
						
							| 4 |  | 1red |  |-  ( ( A e. RR+ /\ 1 < A ) -> 1 e. RR ) | 
						
							| 5 |  | sinbnd |  |-  ( A e. RR -> ( -u 1 <_ ( sin ` A ) /\ ( sin ` A ) <_ 1 ) ) | 
						
							| 6 | 5 | simprd |  |-  ( A e. RR -> ( sin ` A ) <_ 1 ) | 
						
							| 7 | 1 6 | syl |  |-  ( A e. RR+ -> ( sin ` A ) <_ 1 ) | 
						
							| 8 | 7 | adantr |  |-  ( ( A e. RR+ /\ 1 < A ) -> ( sin ` A ) <_ 1 ) | 
						
							| 9 |  | simpr |  |-  ( ( A e. RR+ /\ 1 < A ) -> 1 < A ) | 
						
							| 10 | 3 4 2 8 9 | lelttrd |  |-  ( ( A e. RR+ /\ 1 < A ) -> ( sin ` A ) < A ) | 
						
							| 11 |  | df-3an |  |-  ( ( A e. RR /\ 0 < A /\ A <_ 1 ) <-> ( ( A e. RR /\ 0 < A ) /\ A <_ 1 ) ) | 
						
							| 12 |  | 0xr |  |-  0 e. RR* | 
						
							| 13 |  | 1re |  |-  1 e. RR | 
						
							| 14 |  | elioc2 |  |-  ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) | 
						
							| 15 | 12 13 14 | mp2an |  |-  ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) | 
						
							| 16 |  | elrp |  |-  ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) | 
						
							| 17 | 16 | anbi1i |  |-  ( ( A e. RR+ /\ A <_ 1 ) <-> ( ( A e. RR /\ 0 < A ) /\ A <_ 1 ) ) | 
						
							| 18 | 11 15 17 | 3bitr4i |  |-  ( A e. ( 0 (,] 1 ) <-> ( A e. RR+ /\ A <_ 1 ) ) | 
						
							| 19 |  | sin01bnd |  |-  ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) | 
						
							| 20 | 19 | simprd |  |-  ( A e. ( 0 (,] 1 ) -> ( sin ` A ) < A ) | 
						
							| 21 | 18 20 | sylbir |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( sin ` A ) < A ) | 
						
							| 22 |  | 1red |  |-  ( A e. RR+ -> 1 e. RR ) | 
						
							| 23 | 10 21 22 1 | ltlecasei |  |-  ( A e. RR+ -> ( sin ` A ) < A ) |