Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
2 |
1
|
adantr |
|- ( ( A e. RR+ /\ 1 < A ) -> A e. RR ) |
3 |
2
|
resincld |
|- ( ( A e. RR+ /\ 1 < A ) -> ( sin ` A ) e. RR ) |
4 |
|
1red |
|- ( ( A e. RR+ /\ 1 < A ) -> 1 e. RR ) |
5 |
|
sinbnd |
|- ( A e. RR -> ( -u 1 <_ ( sin ` A ) /\ ( sin ` A ) <_ 1 ) ) |
6 |
5
|
simprd |
|- ( A e. RR -> ( sin ` A ) <_ 1 ) |
7 |
1 6
|
syl |
|- ( A e. RR+ -> ( sin ` A ) <_ 1 ) |
8 |
7
|
adantr |
|- ( ( A e. RR+ /\ 1 < A ) -> ( sin ` A ) <_ 1 ) |
9 |
|
simpr |
|- ( ( A e. RR+ /\ 1 < A ) -> 1 < A ) |
10 |
3 4 2 8 9
|
lelttrd |
|- ( ( A e. RR+ /\ 1 < A ) -> ( sin ` A ) < A ) |
11 |
|
df-3an |
|- ( ( A e. RR /\ 0 < A /\ A <_ 1 ) <-> ( ( A e. RR /\ 0 < A ) /\ A <_ 1 ) ) |
12 |
|
0xr |
|- 0 e. RR* |
13 |
|
1re |
|- 1 e. RR |
14 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) |
15 |
12 13 14
|
mp2an |
|- ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) |
16 |
|
elrp |
|- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
17 |
16
|
anbi1i |
|- ( ( A e. RR+ /\ A <_ 1 ) <-> ( ( A e. RR /\ 0 < A ) /\ A <_ 1 ) ) |
18 |
11 15 17
|
3bitr4i |
|- ( A e. ( 0 (,] 1 ) <-> ( A e. RR+ /\ A <_ 1 ) ) |
19 |
|
sin01bnd |
|- ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) |
20 |
19
|
simprd |
|- ( A e. ( 0 (,] 1 ) -> ( sin ` A ) < A ) |
21 |
18 20
|
sylbir |
|- ( ( A e. RR+ /\ A <_ 1 ) -> ( sin ` A ) < A ) |
22 |
|
1red |
|- ( A e. RR+ -> 1 e. RR ) |
23 |
10 21 22 1
|
ltlecasei |
|- ( A e. RR+ -> ( sin ` A ) < A ) |