| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sinperlem.1 |  |-  ( A e. CC -> ( F ` A ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) | 
						
							| 2 |  | sinperlem.2 |  |-  ( ( A + ( K x. ( 2 x. _pi ) ) ) e. CC -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) ) | 
						
							| 3 |  | zcn |  |-  ( K e. ZZ -> K e. CC ) | 
						
							| 4 |  | 2cn |  |-  2 e. CC | 
						
							| 5 |  | picn |  |-  _pi e. CC | 
						
							| 6 | 4 5 | mulcli |  |-  ( 2 x. _pi ) e. CC | 
						
							| 7 |  | mulcl |  |-  ( ( K e. CC /\ ( 2 x. _pi ) e. CC ) -> ( K x. ( 2 x. _pi ) ) e. CC ) | 
						
							| 8 | 3 6 7 | sylancl |  |-  ( K e. ZZ -> ( K x. ( 2 x. _pi ) ) e. CC ) | 
						
							| 9 |  | ax-icn |  |-  _i e. CC | 
						
							| 10 |  | adddi |  |-  ( ( _i e. CC /\ A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) ) | 
						
							| 11 | 9 10 | mp3an1 |  |-  ( ( A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) ) | 
						
							| 12 | 8 11 | sylan2 |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) ) | 
						
							| 13 |  | mul12 |  |-  ( ( _i e. CC /\ K e. CC /\ ( 2 x. _pi ) e. CC ) -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) | 
						
							| 14 | 9 6 13 | mp3an13 |  |-  ( K e. CC -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) | 
						
							| 15 | 3 14 | syl |  |-  ( K e. ZZ -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) | 
						
							| 16 | 9 6 | mulcli |  |-  ( _i x. ( 2 x. _pi ) ) e. CC | 
						
							| 17 |  | mulcom |  |-  ( ( K e. CC /\ ( _i x. ( 2 x. _pi ) ) e. CC ) -> ( K x. ( _i x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) | 
						
							| 18 | 3 16 17 | sylancl |  |-  ( K e. ZZ -> ( K x. ( _i x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) | 
						
							| 19 | 15 18 | eqtrd |  |-  ( K e. ZZ -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. K ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( ( _i x. A ) + ( _i x. ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) | 
						
							| 22 | 12 21 | eqtrd |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) ) | 
						
							| 24 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 25 | 9 24 | mpan |  |-  ( A e. CC -> ( _i x. A ) e. CC ) | 
						
							| 26 |  | efper |  |-  ( ( ( _i x. A ) e. CC /\ K e. ZZ ) -> ( exp ` ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( exp ` ( _i x. A ) ) ) | 
						
							| 27 | 25 26 | sylan |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( ( _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. K ) ) ) = ( exp ` ( _i x. A ) ) ) | 
						
							| 28 | 23 27 | eqtrd |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( _i x. A ) ) ) | 
						
							| 29 |  | negicn |  |-  -u _i e. CC | 
						
							| 30 |  | adddi |  |-  ( ( -u _i e. CC /\ A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) ) | 
						
							| 31 | 29 30 | mp3an1 |  |-  ( ( A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) ) | 
						
							| 32 | 8 31 | sylan2 |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) ) | 
						
							| 33 | 19 | negeqd |  |-  ( K e. ZZ -> -u ( _i x. ( K x. ( 2 x. _pi ) ) ) = -u ( ( _i x. ( 2 x. _pi ) ) x. K ) ) | 
						
							| 34 |  | mulneg1 |  |-  ( ( _i e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = -u ( _i x. ( K x. ( 2 x. _pi ) ) ) ) | 
						
							| 35 | 9 8 34 | sylancr |  |-  ( K e. ZZ -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = -u ( _i x. ( K x. ( 2 x. _pi ) ) ) ) | 
						
							| 36 |  | mulneg2 |  |-  ( ( ( _i x. ( 2 x. _pi ) ) e. CC /\ K e. CC ) -> ( ( _i x. ( 2 x. _pi ) ) x. -u K ) = -u ( ( _i x. ( 2 x. _pi ) ) x. K ) ) | 
						
							| 37 | 16 3 36 | sylancr |  |-  ( K e. ZZ -> ( ( _i x. ( 2 x. _pi ) ) x. -u K ) = -u ( ( _i x. ( 2 x. _pi ) ) x. K ) ) | 
						
							| 38 | 33 35 37 | 3eqtr4d |  |-  ( K e. ZZ -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( -u _i x. ( K x. ( 2 x. _pi ) ) ) = ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( ( -u _i x. A ) + ( -u _i x. ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) | 
						
							| 41 | 32 40 | eqtrd |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) | 
						
							| 42 | 41 | fveq2d |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) ) | 
						
							| 43 |  | mulcl |  |-  ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) | 
						
							| 44 | 29 43 | mpan |  |-  ( A e. CC -> ( -u _i x. A ) e. CC ) | 
						
							| 45 |  | znegcl |  |-  ( K e. ZZ -> -u K e. ZZ ) | 
						
							| 46 |  | efper |  |-  ( ( ( -u _i x. A ) e. CC /\ -u K e. ZZ ) -> ( exp ` ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) = ( exp ` ( -u _i x. A ) ) ) | 
						
							| 47 | 44 45 46 | syl2an |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( ( -u _i x. A ) + ( ( _i x. ( 2 x. _pi ) ) x. -u K ) ) ) = ( exp ` ( -u _i x. A ) ) ) | 
						
							| 48 | 42 47 | eqtrd |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) = ( exp ` ( -u _i x. A ) ) ) | 
						
							| 49 | 28 48 | oveq12d |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) = ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) ) | 
						
							| 50 | 49 | oveq1d |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) | 
						
							| 51 |  | addcl |  |-  ( ( A e. CC /\ ( K x. ( 2 x. _pi ) ) e. CC ) -> ( A + ( K x. ( 2 x. _pi ) ) ) e. CC ) | 
						
							| 52 | 8 51 | sylan2 |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( A + ( K x. ( 2 x. _pi ) ) ) e. CC ) | 
						
							| 53 | 52 2 | syl |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( ( ( exp ` ( _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) O ( exp ` ( -u _i x. ( A + ( K x. ( 2 x. _pi ) ) ) ) ) ) / D ) ) | 
						
							| 54 | 1 | adantr |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( F ` A ) = ( ( ( exp ` ( _i x. A ) ) O ( exp ` ( -u _i x. A ) ) ) / D ) ) | 
						
							| 55 | 50 53 54 | 3eqtr4d |  |-  ( ( A e. CC /\ K e. ZZ ) -> ( F ` ( A + ( K x. ( 2 x. _pi ) ) ) ) = ( F ` A ) ) |