| Step | Hyp | Ref | Expression | 
						
							| 1 |  | picn |  |-  _pi e. CC | 
						
							| 2 |  | sinadd |  |-  ( ( A e. CC /\ _pi e. CC ) -> ( sin ` ( A + _pi ) ) = ( ( ( sin ` A ) x. ( cos ` _pi ) ) + ( ( cos ` A ) x. ( sin ` _pi ) ) ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( A e. CC -> ( sin ` ( A + _pi ) ) = ( ( ( sin ` A ) x. ( cos ` _pi ) ) + ( ( cos ` A ) x. ( sin ` _pi ) ) ) ) | 
						
							| 4 |  | cospi |  |-  ( cos ` _pi ) = -u 1 | 
						
							| 5 | 4 | oveq2i |  |-  ( ( sin ` A ) x. ( cos ` _pi ) ) = ( ( sin ` A ) x. -u 1 ) | 
						
							| 6 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 7 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 8 |  | mulcom |  |-  ( ( ( sin ` A ) e. CC /\ -u 1 e. CC ) -> ( ( sin ` A ) x. -u 1 ) = ( -u 1 x. ( sin ` A ) ) ) | 
						
							| 9 | 7 8 | mpan2 |  |-  ( ( sin ` A ) e. CC -> ( ( sin ` A ) x. -u 1 ) = ( -u 1 x. ( sin ` A ) ) ) | 
						
							| 10 |  | mulm1 |  |-  ( ( sin ` A ) e. CC -> ( -u 1 x. ( sin ` A ) ) = -u ( sin ` A ) ) | 
						
							| 11 | 9 10 | eqtrd |  |-  ( ( sin ` A ) e. CC -> ( ( sin ` A ) x. -u 1 ) = -u ( sin ` A ) ) | 
						
							| 12 | 6 11 | syl |  |-  ( A e. CC -> ( ( sin ` A ) x. -u 1 ) = -u ( sin ` A ) ) | 
						
							| 13 | 5 12 | eqtrid |  |-  ( A e. CC -> ( ( sin ` A ) x. ( cos ` _pi ) ) = -u ( sin ` A ) ) | 
						
							| 14 |  | sinpi |  |-  ( sin ` _pi ) = 0 | 
						
							| 15 | 14 | oveq2i |  |-  ( ( cos ` A ) x. ( sin ` _pi ) ) = ( ( cos ` A ) x. 0 ) | 
						
							| 16 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 17 | 16 | mul01d |  |-  ( A e. CC -> ( ( cos ` A ) x. 0 ) = 0 ) | 
						
							| 18 | 15 17 | eqtrid |  |-  ( A e. CC -> ( ( cos ` A ) x. ( sin ` _pi ) ) = 0 ) | 
						
							| 19 | 13 18 | oveq12d |  |-  ( A e. CC -> ( ( ( sin ` A ) x. ( cos ` _pi ) ) + ( ( cos ` A ) x. ( sin ` _pi ) ) ) = ( -u ( sin ` A ) + 0 ) ) | 
						
							| 20 | 6 | negcld |  |-  ( A e. CC -> -u ( sin ` A ) e. CC ) | 
						
							| 21 | 20 | addridd |  |-  ( A e. CC -> ( -u ( sin ` A ) + 0 ) = -u ( sin ` A ) ) | 
						
							| 22 | 19 21 | eqtrd |  |-  ( A e. CC -> ( ( ( sin ` A ) x. ( cos ` _pi ) ) + ( ( cos ` A ) x. ( sin ` _pi ) ) ) = -u ( sin ` A ) ) | 
						
							| 23 | 3 22 | eqtrd |  |-  ( A e. CC -> ( sin ` ( A + _pi ) ) = -u ( sin ` A ) ) |