| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re |  |-  0 e. RR | 
						
							| 2 |  | pire |  |-  _pi e. RR | 
						
							| 3 | 1 2 | elicc2i |  |-  ( A e. ( 0 [,] _pi ) <-> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) | 
						
							| 4 | 3 | simp1bi |  |-  ( A e. ( 0 [,] _pi ) -> A e. RR ) | 
						
							| 5 |  | rexr |  |-  ( 0 e. RR -> 0 e. RR* ) | 
						
							| 6 |  | rexr |  |-  ( _pi e. RR -> _pi e. RR* ) | 
						
							| 7 |  | elioo2 |  |-  ( ( 0 e. RR* /\ _pi e. RR* ) -> ( A e. ( 0 (,) _pi ) <-> ( A e. RR /\ 0 < A /\ A < _pi ) ) ) | 
						
							| 8 | 5 6 7 | syl2an |  |-  ( ( 0 e. RR /\ _pi e. RR ) -> ( A e. ( 0 (,) _pi ) <-> ( A e. RR /\ 0 < A /\ A < _pi ) ) ) | 
						
							| 9 | 1 2 8 | mp2an |  |-  ( A e. ( 0 (,) _pi ) <-> ( A e. RR /\ 0 < A /\ A < _pi ) ) | 
						
							| 10 |  | sinq12gt0 |  |-  ( A e. ( 0 (,) _pi ) -> 0 < ( sin ` A ) ) | 
						
							| 11 | 9 10 | sylbir |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( sin ` A ) ) | 
						
							| 12 | 11 | 3expib |  |-  ( A e. RR -> ( ( 0 < A /\ A < _pi ) -> 0 < ( sin ` A ) ) ) | 
						
							| 13 | 4 12 | syl |  |-  ( A e. ( 0 [,] _pi ) -> ( ( 0 < A /\ A < _pi ) -> 0 < ( sin ` A ) ) ) | 
						
							| 14 | 4 | resincld |  |-  ( A e. ( 0 [,] _pi ) -> ( sin ` A ) e. RR ) | 
						
							| 15 |  | ltle |  |-  ( ( 0 e. RR /\ ( sin ` A ) e. RR ) -> ( 0 < ( sin ` A ) -> 0 <_ ( sin ` A ) ) ) | 
						
							| 16 | 1 14 15 | sylancr |  |-  ( A e. ( 0 [,] _pi ) -> ( 0 < ( sin ` A ) -> 0 <_ ( sin ` A ) ) ) | 
						
							| 17 | 13 16 | syld |  |-  ( A e. ( 0 [,] _pi ) -> ( ( 0 < A /\ A < _pi ) -> 0 <_ ( sin ` A ) ) ) | 
						
							| 18 | 17 | expd |  |-  ( A e. ( 0 [,] _pi ) -> ( 0 < A -> ( A < _pi -> 0 <_ ( sin ` A ) ) ) ) | 
						
							| 19 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 20 |  | sin0 |  |-  ( sin ` 0 ) = 0 | 
						
							| 21 | 19 20 | breqtrri |  |-  0 <_ ( sin ` 0 ) | 
						
							| 22 |  | fveq2 |  |-  ( 0 = A -> ( sin ` 0 ) = ( sin ` A ) ) | 
						
							| 23 | 21 22 | breqtrid |  |-  ( 0 = A -> 0 <_ ( sin ` A ) ) | 
						
							| 24 | 23 | a1i13 |  |-  ( A e. ( 0 [,] _pi ) -> ( 0 = A -> ( A < _pi -> 0 <_ ( sin ` A ) ) ) ) | 
						
							| 25 | 3 | simp2bi |  |-  ( A e. ( 0 [,] _pi ) -> 0 <_ A ) | 
						
							| 26 |  | leloe |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) | 
						
							| 27 | 1 4 26 | sylancr |  |-  ( A e. ( 0 [,] _pi ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) | 
						
							| 28 | 25 27 | mpbid |  |-  ( A e. ( 0 [,] _pi ) -> ( 0 < A \/ 0 = A ) ) | 
						
							| 29 | 18 24 28 | mpjaod |  |-  ( A e. ( 0 [,] _pi ) -> ( A < _pi -> 0 <_ ( sin ` A ) ) ) | 
						
							| 30 |  | sinpi |  |-  ( sin ` _pi ) = 0 | 
						
							| 31 | 19 30 | breqtrri |  |-  0 <_ ( sin ` _pi ) | 
						
							| 32 |  | fveq2 |  |-  ( A = _pi -> ( sin ` A ) = ( sin ` _pi ) ) | 
						
							| 33 | 31 32 | breqtrrid |  |-  ( A = _pi -> 0 <_ ( sin ` A ) ) | 
						
							| 34 | 33 | a1i |  |-  ( A e. ( 0 [,] _pi ) -> ( A = _pi -> 0 <_ ( sin ` A ) ) ) | 
						
							| 35 | 3 | simp3bi |  |-  ( A e. ( 0 [,] _pi ) -> A <_ _pi ) | 
						
							| 36 |  | leloe |  |-  ( ( A e. RR /\ _pi e. RR ) -> ( A <_ _pi <-> ( A < _pi \/ A = _pi ) ) ) | 
						
							| 37 | 4 2 36 | sylancl |  |-  ( A e. ( 0 [,] _pi ) -> ( A <_ _pi <-> ( A < _pi \/ A = _pi ) ) ) | 
						
							| 38 | 35 37 | mpbid |  |-  ( A e. ( 0 [,] _pi ) -> ( A < _pi \/ A = _pi ) ) | 
						
							| 39 | 29 34 38 | mpjaod |  |-  ( A e. ( 0 [,] _pi ) -> 0 <_ ( sin ` A ) ) |