| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0xr |  |-  0 e. RR* | 
						
							| 2 |  | pire |  |-  _pi e. RR | 
						
							| 3 | 2 | rexri |  |-  _pi e. RR* | 
						
							| 4 |  | elioo2 |  |-  ( ( 0 e. RR* /\ _pi e. RR* ) -> ( A e. ( 0 (,) _pi ) <-> ( A e. RR /\ 0 < A /\ A < _pi ) ) ) | 
						
							| 5 | 1 3 4 | mp2an |  |-  ( A e. ( 0 (,) _pi ) <-> ( A e. RR /\ 0 < A /\ A < _pi ) ) | 
						
							| 6 |  | rehalfcl |  |-  ( A e. RR -> ( A / 2 ) e. RR ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( A / 2 ) e. RR ) | 
						
							| 8 |  | halfpos2 |  |-  ( A e. RR -> ( 0 < A <-> 0 < ( A / 2 ) ) ) | 
						
							| 9 | 8 | biimpa |  |-  ( ( A e. RR /\ 0 < A ) -> 0 < ( A / 2 ) ) | 
						
							| 10 | 9 | 3adant3 |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( A / 2 ) ) | 
						
							| 11 |  | 2re |  |-  2 e. RR | 
						
							| 12 |  | 2pos |  |-  0 < 2 | 
						
							| 13 | 11 12 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 14 |  | ltdiv1 |  |-  ( ( A e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( A < _pi <-> ( A / 2 ) < ( _pi / 2 ) ) ) | 
						
							| 15 | 2 13 14 | mp3an23 |  |-  ( A e. RR -> ( A < _pi <-> ( A / 2 ) < ( _pi / 2 ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( A e. RR /\ 0 < A ) -> ( A < _pi <-> ( A / 2 ) < ( _pi / 2 ) ) ) | 
						
							| 17 | 16 | biimp3a |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( A / 2 ) < ( _pi / 2 ) ) | 
						
							| 18 |  | sincosq1lem |  |-  ( ( ( A / 2 ) e. RR /\ 0 < ( A / 2 ) /\ ( A / 2 ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( A / 2 ) ) ) | 
						
							| 19 | 7 10 17 18 | syl3anc |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( sin ` ( A / 2 ) ) ) | 
						
							| 20 |  | resubcl |  |-  ( ( _pi e. RR /\ A e. RR ) -> ( _pi - A ) e. RR ) | 
						
							| 21 | 2 20 | mpan |  |-  ( A e. RR -> ( _pi - A ) e. RR ) | 
						
							| 22 |  | rehalfcl |  |-  ( ( _pi - A ) e. RR -> ( ( _pi - A ) / 2 ) e. RR ) | 
						
							| 23 | 21 22 | syl |  |-  ( A e. RR -> ( ( _pi - A ) / 2 ) e. RR ) | 
						
							| 24 | 23 | 3ad2ant1 |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( ( _pi - A ) / 2 ) e. RR ) | 
						
							| 25 |  | posdif |  |-  ( ( A e. RR /\ _pi e. RR ) -> ( A < _pi <-> 0 < ( _pi - A ) ) ) | 
						
							| 26 | 2 25 | mpan2 |  |-  ( A e. RR -> ( A < _pi <-> 0 < ( _pi - A ) ) ) | 
						
							| 27 |  | halfpos2 |  |-  ( ( _pi - A ) e. RR -> ( 0 < ( _pi - A ) <-> 0 < ( ( _pi - A ) / 2 ) ) ) | 
						
							| 28 | 21 27 | syl |  |-  ( A e. RR -> ( 0 < ( _pi - A ) <-> 0 < ( ( _pi - A ) / 2 ) ) ) | 
						
							| 29 | 26 28 | bitrd |  |-  ( A e. RR -> ( A < _pi <-> 0 < ( ( _pi - A ) / 2 ) ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( A e. RR /\ 0 < A ) -> ( A < _pi <-> 0 < ( ( _pi - A ) / 2 ) ) ) | 
						
							| 31 | 30 | biimp3a |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( ( _pi - A ) / 2 ) ) | 
						
							| 32 |  | ltsubpos |  |-  ( ( A e. RR /\ _pi e. RR ) -> ( 0 < A <-> ( _pi - A ) < _pi ) ) | 
						
							| 33 | 2 32 | mpan2 |  |-  ( A e. RR -> ( 0 < A <-> ( _pi - A ) < _pi ) ) | 
						
							| 34 |  | ltdiv1 |  |-  ( ( ( _pi - A ) e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( _pi - A ) < _pi <-> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) ) | 
						
							| 35 | 2 13 34 | mp3an23 |  |-  ( ( _pi - A ) e. RR -> ( ( _pi - A ) < _pi <-> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) ) | 
						
							| 36 | 21 35 | syl |  |-  ( A e. RR -> ( ( _pi - A ) < _pi <-> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) ) | 
						
							| 37 | 33 36 | bitrd |  |-  ( A e. RR -> ( 0 < A <-> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) ) | 
						
							| 38 | 37 | biimpa |  |-  ( ( A e. RR /\ 0 < A ) -> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) | 
						
							| 39 | 38 | 3adant3 |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) | 
						
							| 40 |  | sincosq1lem |  |-  ( ( ( ( _pi - A ) / 2 ) e. RR /\ 0 < ( ( _pi - A ) / 2 ) /\ ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi - A ) / 2 ) ) ) | 
						
							| 41 | 24 31 39 40 | syl3anc |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( sin ` ( ( _pi - A ) / 2 ) ) ) | 
						
							| 42 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 43 |  | picn |  |-  _pi e. CC | 
						
							| 44 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 45 |  | divsubdir |  |-  ( ( _pi e. CC /\ A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( _pi - A ) / 2 ) = ( ( _pi / 2 ) - ( A / 2 ) ) ) | 
						
							| 46 | 43 44 45 | mp3an13 |  |-  ( A e. CC -> ( ( _pi - A ) / 2 ) = ( ( _pi / 2 ) - ( A / 2 ) ) ) | 
						
							| 47 | 42 46 | syl |  |-  ( A e. RR -> ( ( _pi - A ) / 2 ) = ( ( _pi / 2 ) - ( A / 2 ) ) ) | 
						
							| 48 | 47 | fveq2d |  |-  ( A e. RR -> ( sin ` ( ( _pi - A ) / 2 ) ) = ( sin ` ( ( _pi / 2 ) - ( A / 2 ) ) ) ) | 
						
							| 49 | 6 | recnd |  |-  ( A e. RR -> ( A / 2 ) e. CC ) | 
						
							| 50 |  | sinhalfpim |  |-  ( ( A / 2 ) e. CC -> ( sin ` ( ( _pi / 2 ) - ( A / 2 ) ) ) = ( cos ` ( A / 2 ) ) ) | 
						
							| 51 | 49 50 | syl |  |-  ( A e. RR -> ( sin ` ( ( _pi / 2 ) - ( A / 2 ) ) ) = ( cos ` ( A / 2 ) ) ) | 
						
							| 52 | 48 51 | eqtrd |  |-  ( A e. RR -> ( sin ` ( ( _pi - A ) / 2 ) ) = ( cos ` ( A / 2 ) ) ) | 
						
							| 53 | 52 | 3ad2ant1 |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( sin ` ( ( _pi - A ) / 2 ) ) = ( cos ` ( A / 2 ) ) ) | 
						
							| 54 | 41 53 | breqtrd |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( cos ` ( A / 2 ) ) ) | 
						
							| 55 |  | resincl |  |-  ( ( A / 2 ) e. RR -> ( sin ` ( A / 2 ) ) e. RR ) | 
						
							| 56 |  | recoscl |  |-  ( ( A / 2 ) e. RR -> ( cos ` ( A / 2 ) ) e. RR ) | 
						
							| 57 | 55 56 | jca |  |-  ( ( A / 2 ) e. RR -> ( ( sin ` ( A / 2 ) ) e. RR /\ ( cos ` ( A / 2 ) ) e. RR ) ) | 
						
							| 58 |  | axmulgt0 |  |-  ( ( ( sin ` ( A / 2 ) ) e. RR /\ ( cos ` ( A / 2 ) ) e. RR ) -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) | 
						
							| 59 | 6 57 58 | 3syl |  |-  ( A e. RR -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) | 
						
							| 60 |  | remulcl |  |-  ( ( ( sin ` ( A / 2 ) ) e. RR /\ ( cos ` ( A / 2 ) ) e. RR ) -> ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) | 
						
							| 61 | 6 57 60 | 3syl |  |-  ( A e. RR -> ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) | 
						
							| 62 |  | axmulgt0 |  |-  ( ( 2 e. RR /\ ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) -> ( ( 0 < 2 /\ 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) | 
						
							| 63 | 11 61 62 | sylancr |  |-  ( A e. RR -> ( ( 0 < 2 /\ 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) | 
						
							| 64 | 12 63 | mpani |  |-  ( A e. RR -> ( 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) | 
						
							| 65 | 59 64 | syld |  |-  ( A e. RR -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) | 
						
							| 66 | 65 | 3ad2ant1 |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) | 
						
							| 67 | 19 54 66 | mp2and |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) | 
						
							| 68 |  | 2cn |  |-  2 e. CC | 
						
							| 69 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 70 |  | divcan2 |  |-  ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) | 
						
							| 71 | 68 69 70 | mp3an23 |  |-  ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) | 
						
							| 72 | 42 71 | syl |  |-  ( A e. RR -> ( 2 x. ( A / 2 ) ) = A ) | 
						
							| 73 | 72 | fveq2d |  |-  ( A e. RR -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( sin ` A ) ) | 
						
							| 74 |  | sin2t |  |-  ( ( A / 2 ) e. CC -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) | 
						
							| 75 | 49 74 | syl |  |-  ( A e. RR -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) | 
						
							| 76 | 73 75 | eqtr3d |  |-  ( A e. RR -> ( sin ` A ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) | 
						
							| 77 | 76 | 3ad2ant1 |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( sin ` A ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) | 
						
							| 78 | 67 77 | breqtrrd |  |-  ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( sin ` A ) ) | 
						
							| 79 | 5 78 | sylbi |  |-  ( A e. ( 0 (,) _pi ) -> 0 < ( sin ` A ) ) |