Step |
Hyp |
Ref |
Expression |
1 |
|
elioore |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> A e. RR ) |
2 |
|
picn |
|- _pi e. CC |
3 |
2
|
addid2i |
|- ( 0 + _pi ) = _pi |
4 |
3
|
eqcomi |
|- _pi = ( 0 + _pi ) |
5 |
2
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
6 |
4 5
|
oveq12i |
|- ( _pi (,) ( 2 x. _pi ) ) = ( ( 0 + _pi ) (,) ( _pi + _pi ) ) |
7 |
6
|
eleq2i |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) <-> A e. ( ( 0 + _pi ) (,) ( _pi + _pi ) ) ) |
8 |
|
pire |
|- _pi e. RR |
9 |
|
0re |
|- 0 e. RR |
10 |
|
iooshf |
|- ( ( ( A e. RR /\ _pi e. RR ) /\ ( 0 e. RR /\ _pi e. RR ) ) -> ( ( A - _pi ) e. ( 0 (,) _pi ) <-> A e. ( ( 0 + _pi ) (,) ( _pi + _pi ) ) ) ) |
11 |
9 8 10
|
mpanr12 |
|- ( ( A e. RR /\ _pi e. RR ) -> ( ( A - _pi ) e. ( 0 (,) _pi ) <-> A e. ( ( 0 + _pi ) (,) ( _pi + _pi ) ) ) ) |
12 |
8 11
|
mpan2 |
|- ( A e. RR -> ( ( A - _pi ) e. ( 0 (,) _pi ) <-> A e. ( ( 0 + _pi ) (,) ( _pi + _pi ) ) ) ) |
13 |
7 12
|
bitr4id |
|- ( A e. RR -> ( A e. ( _pi (,) ( 2 x. _pi ) ) <-> ( A - _pi ) e. ( 0 (,) _pi ) ) ) |
14 |
1 13
|
syl |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( A e. ( _pi (,) ( 2 x. _pi ) ) <-> ( A - _pi ) e. ( 0 (,) _pi ) ) ) |
15 |
14
|
ibi |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( A - _pi ) e. ( 0 (,) _pi ) ) |
16 |
|
sinq12gt0 |
|- ( ( A - _pi ) e. ( 0 (,) _pi ) -> 0 < ( sin ` ( A - _pi ) ) ) |
17 |
15 16
|
syl |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> 0 < ( sin ` ( A - _pi ) ) ) |
18 |
1
|
recnd |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> A e. CC ) |
19 |
|
sinmpi |
|- ( A e. CC -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
20 |
18 19
|
syl |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
21 |
17 20
|
breqtrd |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> 0 < -u ( sin ` A ) ) |
22 |
1
|
resincld |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( sin ` A ) e. RR ) |
23 |
22
|
lt0neg1d |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( ( sin ` A ) < 0 <-> 0 < -u ( sin ` A ) ) ) |
24 |
21 23
|
mpbird |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( sin ` A ) < 0 ) |