| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elioore |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> A e. RR ) |
| 2 |
|
picn |
|- _pi e. CC |
| 3 |
2
|
addlidi |
|- ( 0 + _pi ) = _pi |
| 4 |
3
|
eqcomi |
|- _pi = ( 0 + _pi ) |
| 5 |
2
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
| 6 |
4 5
|
oveq12i |
|- ( _pi (,) ( 2 x. _pi ) ) = ( ( 0 + _pi ) (,) ( _pi + _pi ) ) |
| 7 |
6
|
eleq2i |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) <-> A e. ( ( 0 + _pi ) (,) ( _pi + _pi ) ) ) |
| 8 |
|
pire |
|- _pi e. RR |
| 9 |
|
0re |
|- 0 e. RR |
| 10 |
|
iooshf |
|- ( ( ( A e. RR /\ _pi e. RR ) /\ ( 0 e. RR /\ _pi e. RR ) ) -> ( ( A - _pi ) e. ( 0 (,) _pi ) <-> A e. ( ( 0 + _pi ) (,) ( _pi + _pi ) ) ) ) |
| 11 |
9 8 10
|
mpanr12 |
|- ( ( A e. RR /\ _pi e. RR ) -> ( ( A - _pi ) e. ( 0 (,) _pi ) <-> A e. ( ( 0 + _pi ) (,) ( _pi + _pi ) ) ) ) |
| 12 |
8 11
|
mpan2 |
|- ( A e. RR -> ( ( A - _pi ) e. ( 0 (,) _pi ) <-> A e. ( ( 0 + _pi ) (,) ( _pi + _pi ) ) ) ) |
| 13 |
7 12
|
bitr4id |
|- ( A e. RR -> ( A e. ( _pi (,) ( 2 x. _pi ) ) <-> ( A - _pi ) e. ( 0 (,) _pi ) ) ) |
| 14 |
1 13
|
syl |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( A e. ( _pi (,) ( 2 x. _pi ) ) <-> ( A - _pi ) e. ( 0 (,) _pi ) ) ) |
| 15 |
14
|
ibi |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( A - _pi ) e. ( 0 (,) _pi ) ) |
| 16 |
|
sinq12gt0 |
|- ( ( A - _pi ) e. ( 0 (,) _pi ) -> 0 < ( sin ` ( A - _pi ) ) ) |
| 17 |
15 16
|
syl |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> 0 < ( sin ` ( A - _pi ) ) ) |
| 18 |
1
|
recnd |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> A e. CC ) |
| 19 |
|
sinmpi |
|- ( A e. CC -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
| 20 |
18 19
|
syl |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
| 21 |
17 20
|
breqtrd |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> 0 < -u ( sin ` A ) ) |
| 22 |
1
|
resincld |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( sin ` A ) e. RR ) |
| 23 |
22
|
lt0neg1d |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( ( sin ` A ) < 0 <-> 0 < -u ( sin ` A ) ) ) |
| 24 |
21 23
|
mpbird |
|- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( sin ` A ) < 0 ) |