| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = A -> ( _i x. x ) = ( _i x. A ) ) |
| 2 |
1
|
fveq2d |
|- ( x = A -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. A ) ) ) |
| 3 |
|
oveq2 |
|- ( x = A -> ( -u _i x. x ) = ( -u _i x. A ) ) |
| 4 |
3
|
fveq2d |
|- ( x = A -> ( exp ` ( -u _i x. x ) ) = ( exp ` ( -u _i x. A ) ) ) |
| 5 |
2 4
|
oveq12d |
|- ( x = A -> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) = ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) |
| 6 |
5
|
oveq1d |
|- ( x = A -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
| 7 |
|
df-sin |
|- sin = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) ) |
| 8 |
|
ovex |
|- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) e. _V |
| 9 |
6 7 8
|
fvmpt |
|- ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |