Description: Addition to both sides of surreal less-than or equal. Theorem 5 of Conway p. 18. (Contributed by Scott Fenton, 21-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addscand.1 | |- ( ph -> A e. No ) |
|
| addscand.2 | |- ( ph -> B e. No ) |
||
| addscand.3 | |- ( ph -> C e. No ) |
||
| Assertion | sleadd1d | |- ( ph -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addscand.1 | |- ( ph -> A e. No ) |
|
| 2 | addscand.2 | |- ( ph -> B e. No ) |
|
| 3 | addscand.3 | |- ( ph -> C e. No ) |
|
| 4 | sleadd1 | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) |