Metamath Proof Explorer


Theorem sleadd2

Description: Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sleadd2
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) )

Proof

Step Hyp Ref Expression
1 sleadd1
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) )
2 addscom
 |-  ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) )
3 2 3adant2
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) )
4 addscom
 |-  ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) )
5 4 3adant1
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) )
6 3 5 breq12d
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) <-> ( C +s A ) <_s ( C +s B ) ) )
7 1 6 bitrd
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) )