Step |
Hyp |
Ref |
Expression |
1 |
|
sleadd1 |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) |
2 |
|
addscom |
|- ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) |
3 |
2
|
3adant2 |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) |
4 |
|
addscom |
|- ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) |
5 |
4
|
3adant1 |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) |
6 |
3 5
|
breq12d |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) <-> ( C +s A ) <_s ( C +s B ) ) ) |
7 |
1 6
|
bitrd |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) ) |