Step |
Hyp |
Ref |
Expression |
1 |
|
sltlpss |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( A ( _Left ` A ) C. ( _Left ` B ) ) ) |
2 |
|
fveq2 |
|- ( A = B -> ( _Left ` A ) = ( _Left ` B ) ) |
3 |
|
simpr |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( _Left ` A ) = ( _Left ` B ) ) |
4 |
|
lruneq |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( ( _Left ` A ) u. ( _Right ` A ) ) = ( ( _Left ` B ) u. ( _Right ` B ) ) ) |
5 |
4
|
adantr |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( _Left ` A ) u. ( _Right ` A ) ) = ( ( _Left ` B ) u. ( _Right ` B ) ) ) |
6 |
5 3
|
difeq12d |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( ( _Left ` A ) u. ( _Right ` A ) ) \ ( _Left ` A ) ) = ( ( ( _Left ` B ) u. ( _Right ` B ) ) \ ( _Left ` B ) ) ) |
7 |
|
difundir |
|- ( ( ( _Left ` A ) u. ( _Right ` A ) ) \ ( _Left ` A ) ) = ( ( ( _Left ` A ) \ ( _Left ` A ) ) u. ( ( _Right ` A ) \ ( _Left ` A ) ) ) |
8 |
|
difid |
|- ( ( _Left ` A ) \ ( _Left ` A ) ) = (/) |
9 |
8
|
uneq1i |
|- ( ( ( _Left ` A ) \ ( _Left ` A ) ) u. ( ( _Right ` A ) \ ( _Left ` A ) ) ) = ( (/) u. ( ( _Right ` A ) \ ( _Left ` A ) ) ) |
10 |
|
0un |
|- ( (/) u. ( ( _Right ` A ) \ ( _Left ` A ) ) ) = ( ( _Right ` A ) \ ( _Left ` A ) ) |
11 |
7 9 10
|
3eqtri |
|- ( ( ( _Left ` A ) u. ( _Right ` A ) ) \ ( _Left ` A ) ) = ( ( _Right ` A ) \ ( _Left ` A ) ) |
12 |
|
incom |
|- ( ( _Left ` A ) i^i ( _Right ` A ) ) = ( ( _Right ` A ) i^i ( _Left ` A ) ) |
13 |
|
lltropt |
|- ( _Left ` A ) < |
14 |
|
ssltdisj |
|- ( ( _Left ` A ) < ( ( _Left ` A ) i^i ( _Right ` A ) ) = (/) ) |
15 |
13 14
|
mp1i |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( _Left ` A ) i^i ( _Right ` A ) ) = (/) ) |
16 |
12 15
|
eqtr3id |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( _Right ` A ) i^i ( _Left ` A ) ) = (/) ) |
17 |
|
disjdif2 |
|- ( ( ( _Right ` A ) i^i ( _Left ` A ) ) = (/) -> ( ( _Right ` A ) \ ( _Left ` A ) ) = ( _Right ` A ) ) |
18 |
16 17
|
syl |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( _Right ` A ) \ ( _Left ` A ) ) = ( _Right ` A ) ) |
19 |
11 18
|
eqtrid |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( ( _Left ` A ) u. ( _Right ` A ) ) \ ( _Left ` A ) ) = ( _Right ` A ) ) |
20 |
|
difundir |
|- ( ( ( _Left ` B ) u. ( _Right ` B ) ) \ ( _Left ` B ) ) = ( ( ( _Left ` B ) \ ( _Left ` B ) ) u. ( ( _Right ` B ) \ ( _Left ` B ) ) ) |
21 |
|
difid |
|- ( ( _Left ` B ) \ ( _Left ` B ) ) = (/) |
22 |
21
|
uneq1i |
|- ( ( ( _Left ` B ) \ ( _Left ` B ) ) u. ( ( _Right ` B ) \ ( _Left ` B ) ) ) = ( (/) u. ( ( _Right ` B ) \ ( _Left ` B ) ) ) |
23 |
|
0un |
|- ( (/) u. ( ( _Right ` B ) \ ( _Left ` B ) ) ) = ( ( _Right ` B ) \ ( _Left ` B ) ) |
24 |
20 22 23
|
3eqtri |
|- ( ( ( _Left ` B ) u. ( _Right ` B ) ) \ ( _Left ` B ) ) = ( ( _Right ` B ) \ ( _Left ` B ) ) |
25 |
|
incom |
|- ( ( _Left ` B ) i^i ( _Right ` B ) ) = ( ( _Right ` B ) i^i ( _Left ` B ) ) |
26 |
|
lltropt |
|- ( _Left ` B ) < |
27 |
|
ssltdisj |
|- ( ( _Left ` B ) < ( ( _Left ` B ) i^i ( _Right ` B ) ) = (/) ) |
28 |
26 27
|
mp1i |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( _Left ` B ) i^i ( _Right ` B ) ) = (/) ) |
29 |
25 28
|
eqtr3id |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( _Right ` B ) i^i ( _Left ` B ) ) = (/) ) |
30 |
|
disjdif2 |
|- ( ( ( _Right ` B ) i^i ( _Left ` B ) ) = (/) -> ( ( _Right ` B ) \ ( _Left ` B ) ) = ( _Right ` B ) ) |
31 |
29 30
|
syl |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( _Right ` B ) \ ( _Left ` B ) ) = ( _Right ` B ) ) |
32 |
24 31
|
eqtrid |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( ( _Left ` B ) u. ( _Right ` B ) ) \ ( _Left ` B ) ) = ( _Right ` B ) ) |
33 |
6 19 32
|
3eqtr3d |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( _Right ` A ) = ( _Right ` B ) ) |
34 |
3 33
|
oveq12d |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( _Left ` A ) |s ( _Right ` A ) ) = ( ( _Left ` B ) |s ( _Right ` B ) ) ) |
35 |
|
simpl1 |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> A e. No ) |
36 |
|
lrcut |
|- ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
37 |
35 36
|
syl |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
38 |
|
simpl2 |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> B e. No ) |
39 |
|
lrcut |
|- ( B e. No -> ( ( _Left ` B ) |s ( _Right ` B ) ) = B ) |
40 |
38 39
|
syl |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> ( ( _Left ` B ) |s ( _Right ` B ) ) = B ) |
41 |
34 37 40
|
3eqtr3d |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ ( _Left ` A ) = ( _Left ` B ) ) -> A = B ) |
42 |
41
|
ex |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( ( _Left ` A ) = ( _Left ` B ) -> A = B ) ) |
43 |
2 42
|
impbid2 |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( A = B <-> ( _Left ` A ) = ( _Left ` B ) ) ) |
44 |
1 43
|
orbi12d |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( ( A ( ( _Left ` A ) C. ( _Left ` B ) \/ ( _Left ` A ) = ( _Left ` B ) ) ) ) |
45 |
|
sleloe |
|- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( A |
46 |
45
|
3adant3 |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( A <_s B <-> ( A |
47 |
|
sspss |
|- ( ( _Left ` A ) C_ ( _Left ` B ) <-> ( ( _Left ` A ) C. ( _Left ` B ) \/ ( _Left ` A ) = ( _Left ` B ) ) ) |
48 |
47
|
a1i |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( ( _Left ` A ) C_ ( _Left ` B ) <-> ( ( _Left ` A ) C. ( _Left ` B ) \/ ( _Left ` A ) = ( _Left ` B ) ) ) ) |
49 |
44 46 48
|
3bitr4d |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( A <_s B <-> ( _Left ` A ) C_ ( _Left ` B ) ) ) |