Metamath Proof Explorer


Theorem slemul1d

Description: Multiplication of both sides of surreal less-than or equal by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses sltmul12d.1
|- ( ph -> A e. No )
sltmul12d.2
|- ( ph -> B e. No )
sltmul12d.3
|- ( ph -> C e. No )
sltmul12d.4
|- ( ph -> 0s 
Assertion slemul1d
|- ( ph -> ( A <_s B <-> ( A x.s C ) <_s ( B x.s C ) ) )

Proof

Step Hyp Ref Expression
1 sltmul12d.1
 |-  ( ph -> A e. No )
2 sltmul12d.2
 |-  ( ph -> B e. No )
3 sltmul12d.3
 |-  ( ph -> C e. No )
4 sltmul12d.4
 |-  ( ph -> 0s 
5 2 1 3 4 sltmul1d
 |-  ( ph -> ( B  ( B x.s C ) 
6 5 notbid
 |-  ( ph -> ( -. B  -. ( B x.s C ) 
7 slenlt
 |-  ( ( A e. No /\ B e. No ) -> ( A <_s B <-> -. B 
8 1 2 7 syl2anc
 |-  ( ph -> ( A <_s B <-> -. B 
9 1 3 mulscld
 |-  ( ph -> ( A x.s C ) e. No )
10 2 3 mulscld
 |-  ( ph -> ( B x.s C ) e. No )
11 slenlt
 |-  ( ( ( A x.s C ) e. No /\ ( B x.s C ) e. No ) -> ( ( A x.s C ) <_s ( B x.s C ) <-> -. ( B x.s C ) 
12 9 10 11 syl2anc
 |-  ( ph -> ( ( A x.s C ) <_s ( B x.s C ) <-> -. ( B x.s C ) 
13 6 8 12 3bitr4d
 |-  ( ph -> ( A <_s B <-> ( A x.s C ) <_s ( B x.s C ) ) )