Step |
Hyp |
Ref |
Expression |
1 |
|
sltmul12d.1 |
|- ( ph -> A e. No ) |
2 |
|
sltmul12d.2 |
|- ( ph -> B e. No ) |
3 |
|
sltmul12d.3 |
|- ( ph -> C e. No ) |
4 |
|
sltmul12d.4 |
|- ( ph -> 0s |
5 |
2 1 3 4
|
sltmul2d |
|- ( ph -> ( B ( C x.s B ) |
6 |
5
|
notbid |
|- ( ph -> ( -. B -. ( C x.s B ) |
7 |
|
slenlt |
|- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> -. B |
8 |
1 2 7
|
syl2anc |
|- ( ph -> ( A <_s B <-> -. B |
9 |
3 1
|
mulscld |
|- ( ph -> ( C x.s A ) e. No ) |
10 |
3 2
|
mulscld |
|- ( ph -> ( C x.s B ) e. No ) |
11 |
|
slenlt |
|- ( ( ( C x.s A ) e. No /\ ( C x.s B ) e. No ) -> ( ( C x.s A ) <_s ( C x.s B ) <-> -. ( C x.s B ) |
12 |
9 10 11
|
syl2anc |
|- ( ph -> ( ( C x.s A ) <_s ( C x.s B ) <-> -. ( C x.s B ) |
13 |
6 8 12
|
3bitr4d |
|- ( ph -> ( A <_s B <-> ( C x.s A ) <_s ( C x.s B ) ) ) |