Step |
Hyp |
Ref |
Expression |
1 |
|
slemuld.1 |
|- ( ph -> A e. No ) |
2 |
|
slemuld.2 |
|- ( ph -> B e. No ) |
3 |
|
slemuld.3 |
|- ( ph -> C e. No ) |
4 |
|
slemuld.4 |
|- ( ph -> D e. No ) |
5 |
|
slemuld.5 |
|- ( ph -> A <_s B ) |
6 |
|
slemuld.6 |
|- ( ph -> C <_s D ) |
7 |
1 4
|
mulscld |
|- ( ph -> ( A x.s D ) e. No ) |
8 |
1 3
|
mulscld |
|- ( ph -> ( A x.s C ) e. No ) |
9 |
7 8
|
subscld |
|- ( ph -> ( ( A x.s D ) -s ( A x.s C ) ) e. No ) |
10 |
9
|
adantr |
|- ( ( ph /\ ( A ( ( A x.s D ) -s ( A x.s C ) ) e. No ) |
11 |
2 4
|
mulscld |
|- ( ph -> ( B x.s D ) e. No ) |
12 |
2 3
|
mulscld |
|- ( ph -> ( B x.s C ) e. No ) |
13 |
11 12
|
subscld |
|- ( ph -> ( ( B x.s D ) -s ( B x.s C ) ) e. No ) |
14 |
13
|
adantr |
|- ( ( ph /\ ( A ( ( B x.s D ) -s ( B x.s C ) ) e. No ) |
15 |
1
|
adantr |
|- ( ( ph /\ ( A A e. No ) |
16 |
2
|
adantr |
|- ( ( ph /\ ( A B e. No ) |
17 |
3
|
adantr |
|- ( ( ph /\ ( A C e. No ) |
18 |
4
|
adantr |
|- ( ( ph /\ ( A D e. No ) |
19 |
|
simprl |
|- ( ( ph /\ ( A A |
20 |
|
simprr |
|- ( ( ph /\ ( A C |
21 |
15 16 17 18 19 20
|
sltmuld |
|- ( ( ph /\ ( A ( ( A x.s D ) -s ( A x.s C ) ) |
22 |
10 14 21
|
sltled |
|- ( ( ph /\ ( A ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
23 |
22
|
anassrs |
|- ( ( ( ph /\ A ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
24 |
|
0sno |
|- 0s e. No |
25 |
|
slerflex |
|- ( 0s e. No -> 0s <_s 0s ) |
26 |
24 25
|
mp1i |
|- ( ph -> 0s <_s 0s ) |
27 |
|
subsid |
|- ( ( A x.s D ) e. No -> ( ( A x.s D ) -s ( A x.s D ) ) = 0s ) |
28 |
7 27
|
syl |
|- ( ph -> ( ( A x.s D ) -s ( A x.s D ) ) = 0s ) |
29 |
|
subsid |
|- ( ( B x.s D ) e. No -> ( ( B x.s D ) -s ( B x.s D ) ) = 0s ) |
30 |
11 29
|
syl |
|- ( ph -> ( ( B x.s D ) -s ( B x.s D ) ) = 0s ) |
31 |
26 28 30
|
3brtr4d |
|- ( ph -> ( ( A x.s D ) -s ( A x.s D ) ) <_s ( ( B x.s D ) -s ( B x.s D ) ) ) |
32 |
|
oveq2 |
|- ( C = D -> ( A x.s C ) = ( A x.s D ) ) |
33 |
32
|
oveq2d |
|- ( C = D -> ( ( A x.s D ) -s ( A x.s C ) ) = ( ( A x.s D ) -s ( A x.s D ) ) ) |
34 |
|
oveq2 |
|- ( C = D -> ( B x.s C ) = ( B x.s D ) ) |
35 |
34
|
oveq2d |
|- ( C = D -> ( ( B x.s D ) -s ( B x.s C ) ) = ( ( B x.s D ) -s ( B x.s D ) ) ) |
36 |
33 35
|
breq12d |
|- ( C = D -> ( ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) <-> ( ( A x.s D ) -s ( A x.s D ) ) <_s ( ( B x.s D ) -s ( B x.s D ) ) ) ) |
37 |
31 36
|
syl5ibrcom |
|- ( ph -> ( C = D -> ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) ) |
38 |
37
|
imp |
|- ( ( ph /\ C = D ) -> ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
39 |
38
|
adantlr |
|- ( ( ( ph /\ A ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
40 |
|
sleloe |
|- ( ( C e. No /\ D e. No ) -> ( C <_s D <-> ( C |
41 |
3 4 40
|
syl2anc |
|- ( ph -> ( C <_s D <-> ( C |
42 |
6 41
|
mpbid |
|- ( ph -> ( C |
43 |
42
|
adantr |
|- ( ( ph /\ A ( C |
44 |
23 39 43
|
mpjaodan |
|- ( ( ph /\ A ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
45 |
|
slerflex |
|- ( ( ( B x.s D ) -s ( B x.s C ) ) e. No -> ( ( B x.s D ) -s ( B x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
46 |
13 45
|
syl |
|- ( ph -> ( ( B x.s D ) -s ( B x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
47 |
|
oveq1 |
|- ( A = B -> ( A x.s D ) = ( B x.s D ) ) |
48 |
|
oveq1 |
|- ( A = B -> ( A x.s C ) = ( B x.s C ) ) |
49 |
47 48
|
oveq12d |
|- ( A = B -> ( ( A x.s D ) -s ( A x.s C ) ) = ( ( B x.s D ) -s ( B x.s C ) ) ) |
50 |
49
|
breq1d |
|- ( A = B -> ( ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) <-> ( ( B x.s D ) -s ( B x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) ) |
51 |
46 50
|
syl5ibrcom |
|- ( ph -> ( A = B -> ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) ) |
52 |
51
|
imp |
|- ( ( ph /\ A = B ) -> ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |
53 |
|
sleloe |
|- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( A |
54 |
1 2 53
|
syl2anc |
|- ( ph -> ( A <_s B <-> ( A |
55 |
5 54
|
mpbid |
|- ( ph -> ( A |
56 |
44 52 55
|
mpjaodan |
|- ( ph -> ( ( A x.s D ) -s ( A x.s C ) ) <_s ( ( B x.s D ) -s ( B x.s C ) ) ) |