Metamath Proof Explorer


Theorem sleneg

Description: Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion sleneg
|- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) )

Proof

Step Hyp Ref Expression
1 sltneg
 |-  ( ( B e. No /\ A e. No ) -> ( B  ( -us ` A ) 
2 1 ancoms
 |-  ( ( A e. No /\ B e. No ) -> ( B  ( -us ` A ) 
3 2 notbid
 |-  ( ( A e. No /\ B e. No ) -> ( -. B  -. ( -us ` A ) 
4 slenlt
 |-  ( ( A e. No /\ B e. No ) -> ( A <_s B <-> -. B 
5 negscl
 |-  ( B e. No -> ( -us ` B ) e. No )
6 negscl
 |-  ( A e. No -> ( -us ` A ) e. No )
7 slenlt
 |-  ( ( ( -us ` B ) e. No /\ ( -us ` A ) e. No ) -> ( ( -us ` B ) <_s ( -us ` A ) <-> -. ( -us ` A ) 
8 5 6 7 syl2anr
 |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` B ) <_s ( -us ` A ) <-> -. ( -us ` A ) 
9 3 4 8 3bitr4d
 |-  ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) )