Metamath Proof Explorer


Theorem slenegd

Description: Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltnegd.1
|- ( ph -> A e. No )
sltnegd.2
|- ( ph -> B e. No )
Assertion slenegd
|- ( ph -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) )

Proof

Step Hyp Ref Expression
1 sltnegd.1
 |-  ( ph -> A e. No )
2 sltnegd.2
 |-  ( ph -> B e. No )
3 sleneg
 |-  ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) )