Description: Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 14-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sltnegd.1 | |- ( ph -> A e. No ) |
|
sltnegd.2 | |- ( ph -> B e. No ) |
||
Assertion | slenegd | |- ( ph -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltnegd.1 | |- ( ph -> A e. No ) |
|
2 | sltnegd.2 | |- ( ph -> B e. No ) |
|
3 | sleneg | |- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) |