Metamath Proof Explorer


Theorem slerecd

Description: A comparison law for surreals considered as cuts of sets of surreals. Definition from Conway p. 4. Theorem 4 of Alling p. 186. Theorem 2.5 of Gonshor p. 9. (Contributed by Scott Fenton, 5-Dec-2025)

Ref Expression
Hypotheses slerecd.1
|- ( ph -> A <
slerecd.2
|- ( ph -> C <
slerecd.3
|- ( ph -> X = ( A |s B ) )
slerecd.4
|- ( ph -> Y = ( C |s D ) )
Assertion slerecd
|- ( ph -> ( X <_s Y <-> ( A. d e. D X 

Proof

Step Hyp Ref Expression
1 slerecd.1
 |-  ( ph -> A <
2 slerecd.2
 |-  ( ph -> C <
3 slerecd.3
 |-  ( ph -> X = ( A |s B ) )
4 slerecd.4
 |-  ( ph -> Y = ( C |s D ) )
5 slerec
 |-  ( ( ( A < ( X <_s Y <-> ( A. d e. D X 
6 1 2 3 4 5 syl22anc
 |-  ( ph -> ( X <_s Y <-> ( A. d e. D X