Description: A comparison law for surreals considered as cuts of sets of surreals. Definition from Conway p. 4. Theorem 4 of Alling p. 186. Theorem 2.5 of Gonshor p. 9. (Contributed by Scott Fenton, 5-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | slerecd.1 | |- ( ph -> A < |
|
| slerecd.2 | |- ( ph -> C < |
||
| slerecd.3 | |- ( ph -> X = ( A |s B ) ) |
||
| slerecd.4 | |- ( ph -> Y = ( C |s D ) ) |
||
| Assertion | slerecd | |- ( ph -> ( X <_s Y <-> ( A. d e. D X |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slerecd.1 | |- ( ph -> A < |
|
| 2 | slerecd.2 | |- ( ph -> C < |
|
| 3 | slerecd.3 | |- ( ph -> X = ( A |s B ) ) |
|
| 4 | slerecd.4 | |- ( ph -> Y = ( C |s D ) ) |
|
| 5 | slerec | |- ( ( ( A < |
|
| 6 | 1 2 3 4 5 | syl22anc | |- ( ph -> ( X <_s Y <-> ( A. d e. D X |