| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							slesolex.a | 
							 |-  A = ( N Mat R )  | 
						
						
							| 2 | 
							
								
							 | 
							slesolex.b | 
							 |-  B = ( Base ` A )  | 
						
						
							| 3 | 
							
								
							 | 
							slesolex.v | 
							 |-  V = ( ( Base ` R ) ^m N )  | 
						
						
							| 4 | 
							
								
							 | 
							slesolex.x | 
							 |-  .x. = ( R maVecMul <. N , N >. )  | 
						
						
							| 5 | 
							
								
							 | 
							slesolex.d | 
							 |-  D = ( N maDet R )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` R ) = ( Base ` R )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( .r ` R ) = ( .r ` R )  | 
						
						
							| 8 | 
							
								
							 | 
							crngring | 
							 |-  ( R e. CRing -> R e. Ring )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantl | 
							 |-  ( ( N =/= (/) /\ R e. CRing ) -> R e. Ring )  | 
						
						
							| 10 | 
							
								9
							 | 
							3ad2ant1 | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> R e. Ring )  | 
						
						
							| 11 | 
							
								1 2
							 | 
							matrcl | 
							 |-  ( X e. B -> ( N e. Fin /\ R e. _V ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							simpld | 
							 |-  ( X e. B -> N e. Fin )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( X e. B /\ Y e. V ) -> N e. Fin )  | 
						
						
							| 14 | 
							
								13
							 | 
							3ad2ant2 | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> N e. Fin )  | 
						
						
							| 15 | 
							
								9 13
							 | 
							anim12ci | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( N e. Fin /\ R e. Ring ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							3adant3 | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( N e. Fin /\ R e. Ring ) )  | 
						
						
							| 17 | 
							
								1
							 | 
							matring | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> A e. Ring )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( Unit ` A ) = ( Unit ` A )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							 |-  ( Unit ` R ) = ( Unit ` R )  | 
						
						
							| 21 | 
							
								1 5 2 19 20
							 | 
							matunit | 
							 |-  ( ( R e. CRing /\ X e. B ) -> ( X e. ( Unit ` A ) <-> ( D ` X ) e. ( Unit ` R ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							bicomd | 
							 |-  ( ( R e. CRing /\ X e. B ) -> ( ( D ` X ) e. ( Unit ` R ) <-> X e. ( Unit ` A ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							ad2ant2lr | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( ( D ` X ) e. ( Unit ` R ) <-> X e. ( Unit ` A ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							biimp3a | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> X e. ( Unit ` A ) )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							 |-  ( invr ` A ) = ( invr ` A )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` A ) = ( Base ` A )  | 
						
						
							| 27 | 
							
								19 25 26
							 | 
							ringinvcl | 
							 |-  ( ( A e. Ring /\ X e. ( Unit ` A ) ) -> ( ( invr ` A ) ` X ) e. ( Base ` A ) )  | 
						
						
							| 28 | 
							
								18 24 27
							 | 
							syl2anc | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( invr ` A ) ` X ) e. ( Base ` A ) )  | 
						
						
							| 29 | 
							
								3
							 | 
							eleq2i | 
							 |-  ( Y e. V <-> Y e. ( ( Base ` R ) ^m N ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							biimpi | 
							 |-  ( Y e. V -> Y e. ( ( Base ` R ) ^m N ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantl | 
							 |-  ( ( X e. B /\ Y e. V ) -> Y e. ( ( Base ` R ) ^m N ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							3ad2ant2 | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> Y e. ( ( Base ` R ) ^m N ) )  | 
						
						
							| 33 | 
							
								1 4 6 7 10 14 28 32
							 | 
							mavmulcl | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( ( invr ` A ) ` X ) .x. Y ) e. ( ( Base ` R ) ^m N ) )  | 
						
						
							| 34 | 
							
								33 3
							 | 
							eleqtrrdi | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( ( invr ` A ) ` X ) .x. Y ) e. V )  | 
						
						
							| 35 | 
							
								1 2 3 4 5 25
							 | 
							slesolinvbi | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( X .x. z ) = Y <-> z = ( ( ( invr ` A ) ` X ) .x. Y ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantr | 
							 |-  ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( ( X .x. z ) = Y <-> z = ( ( ( invr ` A ) ` X ) .x. Y ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							biimprd | 
							 |-  ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( z = ( ( ( invr ` A ) ` X ) .x. Y ) -> ( X .x. z ) = Y ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							impancom | 
							 |-  ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ z = ( ( ( invr ` A ) ` X ) .x. Y ) ) -> ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( X .x. z ) = Y ) )  | 
						
						
							| 39 | 
							
								34 38
							 | 
							rspcimedv | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> E. z e. V ( X .x. z ) = Y ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							pm2.43i | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> E. z e. V ( X .x. z ) = Y )  |