Step |
Hyp |
Ref |
Expression |
1 |
|
slesolex.a |
|- A = ( N Mat R ) |
2 |
|
slesolex.b |
|- B = ( Base ` A ) |
3 |
|
slesolex.v |
|- V = ( ( Base ` R ) ^m N ) |
4 |
|
slesolex.x |
|- .x. = ( R maVecMul <. N , N >. ) |
5 |
|
slesolex.d |
|- D = ( N maDet R ) |
6 |
|
slesolinv.i |
|- I = ( invr ` A ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
9 |
8
|
adantl |
|- ( ( N =/= (/) /\ R e. CRing ) -> R e. Ring ) |
10 |
9
|
3ad2ant1 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> R e. Ring ) |
11 |
1 2
|
matrcl |
|- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
12 |
11
|
simpld |
|- ( X e. B -> N e. Fin ) |
13 |
12
|
adantr |
|- ( ( X e. B /\ Y e. V ) -> N e. Fin ) |
14 |
13
|
3ad2ant2 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> N e. Fin ) |
15 |
8
|
anim2i |
|- ( ( N =/= (/) /\ R e. CRing ) -> ( N =/= (/) /\ R e. Ring ) ) |
16 |
15
|
anim1i |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) ) |
17 |
16
|
3adant3 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) ) |
18 |
|
simpr |
|- ( ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) -> ( X .x. Z ) = Y ) |
19 |
18
|
3ad2ant3 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( X .x. Z ) = Y ) |
20 |
1 2 3 4
|
slesolvec |
|- ( ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) -> ( ( X .x. Z ) = Y -> Z e. V ) ) |
21 |
17 19 20
|
sylc |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> Z e. V ) |
22 |
21 3
|
eleqtrdi |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> Z e. ( ( Base ` R ) ^m N ) ) |
23 |
|
eqid |
|- ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) |
24 |
9 13
|
anim12ci |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( N e. Fin /\ R e. Ring ) ) |
25 |
24
|
3adant3 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( N e. Fin /\ R e. Ring ) ) |
26 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
27 |
25 26
|
syl |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> A e. Ring ) |
28 |
|
eqid |
|- ( Unit ` A ) = ( Unit ` A ) |
29 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
30 |
1 5 2 28 29
|
matunit |
|- ( ( R e. CRing /\ X e. B ) -> ( X e. ( Unit ` A ) <-> ( D ` X ) e. ( Unit ` R ) ) ) |
31 |
30
|
bicomd |
|- ( ( R e. CRing /\ X e. B ) -> ( ( D ` X ) e. ( Unit ` R ) <-> X e. ( Unit ` A ) ) ) |
32 |
31
|
ad2ant2lr |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( ( D ` X ) e. ( Unit ` R ) <-> X e. ( Unit ` A ) ) ) |
33 |
32
|
biimpd |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( ( D ` X ) e. ( Unit ` R ) -> X e. ( Unit ` A ) ) ) |
34 |
33
|
adantrd |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) -> X e. ( Unit ` A ) ) ) |
35 |
34
|
3impia |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> X e. ( Unit ` A ) ) |
36 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
37 |
28 6 36
|
ringinvcl |
|- ( ( A e. Ring /\ X e. ( Unit ` A ) ) -> ( I ` X ) e. ( Base ` A ) ) |
38 |
27 35 37
|
syl2anc |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( I ` X ) e. ( Base ` A ) ) |
39 |
2
|
eleq2i |
|- ( X e. B <-> X e. ( Base ` A ) ) |
40 |
39
|
biimpi |
|- ( X e. B -> X e. ( Base ` A ) ) |
41 |
40
|
adantr |
|- ( ( X e. B /\ Y e. V ) -> X e. ( Base ` A ) ) |
42 |
41
|
3ad2ant2 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> X e. ( Base ` A ) ) |
43 |
1 7 4 10 14 22 23 38 42
|
mavmulass |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( ( ( I ` X ) ( R maMul <. N , N , N >. ) X ) .x. Z ) = ( ( I ` X ) .x. ( X .x. Z ) ) ) |
44 |
|
simpr |
|- ( ( N =/= (/) /\ R e. CRing ) -> R e. CRing ) |
45 |
44 13
|
anim12ci |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( N e. Fin /\ R e. CRing ) ) |
46 |
45
|
3adant3 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( N e. Fin /\ R e. CRing ) ) |
47 |
1 23
|
matmulr |
|- ( ( N e. Fin /\ R e. CRing ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
48 |
46 47
|
syl |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
49 |
48
|
oveqd |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( ( I ` X ) ( R maMul <. N , N , N >. ) X ) = ( ( I ` X ) ( .r ` A ) X ) ) |
50 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
51 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
52 |
28 6 50 51
|
unitlinv |
|- ( ( A e. Ring /\ X e. ( Unit ` A ) ) -> ( ( I ` X ) ( .r ` A ) X ) = ( 1r ` A ) ) |
53 |
27 35 52
|
syl2anc |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( ( I ` X ) ( .r ` A ) X ) = ( 1r ` A ) ) |
54 |
49 53
|
eqtrd |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( ( I ` X ) ( R maMul <. N , N , N >. ) X ) = ( 1r ` A ) ) |
55 |
54
|
oveq1d |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( ( ( I ` X ) ( R maMul <. N , N , N >. ) X ) .x. Z ) = ( ( 1r ` A ) .x. Z ) ) |
56 |
1 7 4 10 14 22
|
1mavmul |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( ( 1r ` A ) .x. Z ) = Z ) |
57 |
55 56
|
eqtrd |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( ( ( I ` X ) ( R maMul <. N , N , N >. ) X ) .x. Z ) = Z ) |
58 |
|
oveq2 |
|- ( ( X .x. Z ) = Y -> ( ( I ` X ) .x. ( X .x. Z ) ) = ( ( I ` X ) .x. Y ) ) |
59 |
58
|
adantl |
|- ( ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) -> ( ( I ` X ) .x. ( X .x. Z ) ) = ( ( I ` X ) .x. Y ) ) |
60 |
59
|
3ad2ant3 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> ( ( I ` X ) .x. ( X .x. Z ) ) = ( ( I ` X ) .x. Y ) ) |
61 |
43 57 60
|
3eqtr3d |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> Z = ( ( I ` X ) .x. Y ) ) |