Step |
Hyp |
Ref |
Expression |
1 |
|
slesolex.a |
|- A = ( N Mat R ) |
2 |
|
slesolex.b |
|- B = ( Base ` A ) |
3 |
|
slesolex.v |
|- V = ( ( Base ` R ) ^m N ) |
4 |
|
slesolex.x |
|- .x. = ( R maVecMul <. N , N >. ) |
5 |
|
slesolex.d |
|- D = ( N maDet R ) |
6 |
|
slesolinv.i |
|- I = ( invr ` A ) |
7 |
|
simpl1 |
|- ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> ( N =/= (/) /\ R e. CRing ) ) |
8 |
|
simpl2 |
|- ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> ( X e. B /\ Y e. V ) ) |
9 |
|
simp3 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( D ` X ) e. ( Unit ` R ) ) |
10 |
9
|
anim1i |
|- ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) |
11 |
1 2 3 4 5 6
|
slesolinv |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> Z = ( ( I ` X ) .x. Y ) ) |
12 |
7 8 10 11
|
syl3anc |
|- ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> Z = ( ( I ` X ) .x. Y ) ) |
13 |
|
oveq2 |
|- ( Z = ( ( I ` X ) .x. Y ) -> ( X .x. Z ) = ( X .x. ( ( I ` X ) .x. Y ) ) ) |
14 |
|
simpr |
|- ( ( N =/= (/) /\ R e. CRing ) -> R e. CRing ) |
15 |
1 2
|
matrcl |
|- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
16 |
15
|
simpld |
|- ( X e. B -> N e. Fin ) |
17 |
16
|
adantr |
|- ( ( X e. B /\ Y e. V ) -> N e. Fin ) |
18 |
14 17
|
anim12ci |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( N e. Fin /\ R e. CRing ) ) |
19 |
18
|
3adant3 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( N e. Fin /\ R e. CRing ) ) |
20 |
|
eqid |
|- ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) |
21 |
1 20
|
matmulr |
|- ( ( N e. Fin /\ R e. CRing ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
22 |
19 21
|
syl |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
23 |
22
|
oveqd |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( X ( R maMul <. N , N , N >. ) ( I ` X ) ) = ( X ( .r ` A ) ( I ` X ) ) ) |
24 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
25 |
24
|
adantl |
|- ( ( N =/= (/) /\ R e. CRing ) -> R e. Ring ) |
26 |
25 17
|
anim12ci |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( N e. Fin /\ R e. Ring ) ) |
27 |
26
|
3adant3 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( N e. Fin /\ R e. Ring ) ) |
28 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
29 |
27 28
|
syl |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> A e. Ring ) |
30 |
|
eqid |
|- ( Unit ` A ) = ( Unit ` A ) |
31 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
32 |
1 5 2 30 31
|
matunit |
|- ( ( R e. CRing /\ X e. B ) -> ( X e. ( Unit ` A ) <-> ( D ` X ) e. ( Unit ` R ) ) ) |
33 |
32
|
ad2ant2lr |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( X e. ( Unit ` A ) <-> ( D ` X ) e. ( Unit ` R ) ) ) |
34 |
33
|
biimp3ar |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> X e. ( Unit ` A ) ) |
35 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
36 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
37 |
30 6 35 36
|
unitrinv |
|- ( ( A e. Ring /\ X e. ( Unit ` A ) ) -> ( X ( .r ` A ) ( I ` X ) ) = ( 1r ` A ) ) |
38 |
29 34 37
|
syl2anc |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( X ( .r ` A ) ( I ` X ) ) = ( 1r ` A ) ) |
39 |
23 38
|
eqtrd |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( X ( R maMul <. N , N , N >. ) ( I ` X ) ) = ( 1r ` A ) ) |
40 |
39
|
oveq1d |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( X ( R maMul <. N , N , N >. ) ( I ` X ) ) .x. Y ) = ( ( 1r ` A ) .x. Y ) ) |
41 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
42 |
25
|
3ad2ant1 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> R e. Ring ) |
43 |
17
|
3ad2ant2 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> N e. Fin ) |
44 |
3
|
eleq2i |
|- ( Y e. V <-> Y e. ( ( Base ` R ) ^m N ) ) |
45 |
44
|
biimpi |
|- ( Y e. V -> Y e. ( ( Base ` R ) ^m N ) ) |
46 |
45
|
adantl |
|- ( ( X e. B /\ Y e. V ) -> Y e. ( ( Base ` R ) ^m N ) ) |
47 |
46
|
3ad2ant2 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> Y e. ( ( Base ` R ) ^m N ) ) |
48 |
2
|
eleq2i |
|- ( X e. B <-> X e. ( Base ` A ) ) |
49 |
48
|
biimpi |
|- ( X e. B -> X e. ( Base ` A ) ) |
50 |
49
|
adantr |
|- ( ( X e. B /\ Y e. V ) -> X e. ( Base ` A ) ) |
51 |
50
|
3ad2ant2 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> X e. ( Base ` A ) ) |
52 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
53 |
30 6 52
|
ringinvcl |
|- ( ( A e. Ring /\ X e. ( Unit ` A ) ) -> ( I ` X ) e. ( Base ` A ) ) |
54 |
29 34 53
|
syl2anc |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( I ` X ) e. ( Base ` A ) ) |
55 |
1 41 4 42 43 47 20 51 54
|
mavmulass |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( X ( R maMul <. N , N , N >. ) ( I ` X ) ) .x. Y ) = ( X .x. ( ( I ` X ) .x. Y ) ) ) |
56 |
1 41 4 42 43 47
|
1mavmul |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( 1r ` A ) .x. Y ) = Y ) |
57 |
40 55 56
|
3eqtr3d |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( X .x. ( ( I ` X ) .x. Y ) ) = Y ) |
58 |
13 57
|
sylan9eqr |
|- ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ Z = ( ( I ` X ) .x. Y ) ) -> ( X .x. Z ) = Y ) |
59 |
12 58
|
impbida |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( X .x. Z ) = Y <-> Z = ( ( I ` X ) .x. Y ) ) ) |