| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							slesolex.a | 
							 |-  A = ( N Mat R )  | 
						
						
							| 2 | 
							
								
							 | 
							slesolex.b | 
							 |-  B = ( Base ` A )  | 
						
						
							| 3 | 
							
								
							 | 
							slesolex.v | 
							 |-  V = ( ( Base ` R ) ^m N )  | 
						
						
							| 4 | 
							
								
							 | 
							slesolex.x | 
							 |-  .x. = ( R maVecMul <. N , N >. )  | 
						
						
							| 5 | 
							
								
							 | 
							slesolex.d | 
							 |-  D = ( N maDet R )  | 
						
						
							| 6 | 
							
								
							 | 
							slesolinv.i | 
							 |-  I = ( invr ` A )  | 
						
						
							| 7 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> ( N =/= (/) /\ R e. CRing ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> ( X e. B /\ Y e. V ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( D ` X ) e. ( Unit ` R ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							anim1i | 
							 |-  ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6
							 | 
							slesolinv | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) ) -> Z = ( ( I ` X ) .x. Y ) )  | 
						
						
							| 12 | 
							
								7 8 10 11
							 | 
							syl3anc | 
							 |-  ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> Z = ( ( I ` X ) .x. Y ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq2 | 
							 |-  ( Z = ( ( I ` X ) .x. Y ) -> ( X .x. Z ) = ( X .x. ( ( I ` X ) .x. Y ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							 |-  ( ( N =/= (/) /\ R e. CRing ) -> R e. CRing )  | 
						
						
							| 15 | 
							
								1 2
							 | 
							matrcl | 
							 |-  ( X e. B -> ( N e. Fin /\ R e. _V ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							simpld | 
							 |-  ( X e. B -> N e. Fin )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantr | 
							 |-  ( ( X e. B /\ Y e. V ) -> N e. Fin )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							anim12ci | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( N e. Fin /\ R e. CRing ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							3adant3 | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( N e. Fin /\ R e. CRing ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							 |-  ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. )  | 
						
						
							| 21 | 
							
								1 20
							 | 
							matmulr | 
							 |-  ( ( N e. Fin /\ R e. CRing ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							syl | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveqd | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( X ( R maMul <. N , N , N >. ) ( I ` X ) ) = ( X ( .r ` A ) ( I ` X ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							crngring | 
							 |-  ( R e. CRing -> R e. Ring )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantl | 
							 |-  ( ( N =/= (/) /\ R e. CRing ) -> R e. Ring )  | 
						
						
							| 26 | 
							
								25 17
							 | 
							anim12ci | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( N e. Fin /\ R e. Ring ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							3adant3 | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( N e. Fin /\ R e. Ring ) )  | 
						
						
							| 28 | 
							
								1
							 | 
							matring | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							syl | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> A e. Ring )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							 |-  ( Unit ` A ) = ( Unit ` A )  | 
						
						
							| 31 | 
							
								
							 | 
							eqid | 
							 |-  ( Unit ` R ) = ( Unit ` R )  | 
						
						
							| 32 | 
							
								1 5 2 30 31
							 | 
							matunit | 
							 |-  ( ( R e. CRing /\ X e. B ) -> ( X e. ( Unit ` A ) <-> ( D ` X ) e. ( Unit ` R ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							ad2ant2lr | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) ) -> ( X e. ( Unit ` A ) <-> ( D ` X ) e. ( Unit ` R ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							biimp3ar | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> X e. ( Unit ` A ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							 |-  ( .r ` A ) = ( .r ` A )  | 
						
						
							| 36 | 
							
								
							 | 
							eqid | 
							 |-  ( 1r ` A ) = ( 1r ` A )  | 
						
						
							| 37 | 
							
								30 6 35 36
							 | 
							unitrinv | 
							 |-  ( ( A e. Ring /\ X e. ( Unit ` A ) ) -> ( X ( .r ` A ) ( I ` X ) ) = ( 1r ` A ) )  | 
						
						
							| 38 | 
							
								29 34 37
							 | 
							syl2anc | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( X ( .r ` A ) ( I ` X ) ) = ( 1r ` A ) )  | 
						
						
							| 39 | 
							
								23 38
							 | 
							eqtrd | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( X ( R maMul <. N , N , N >. ) ( I ` X ) ) = ( 1r ` A ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							oveq1d | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( X ( R maMul <. N , N , N >. ) ( I ` X ) ) .x. Y ) = ( ( 1r ` A ) .x. Y ) )  | 
						
						
							| 41 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` R ) = ( Base ` R )  | 
						
						
							| 42 | 
							
								25
							 | 
							3ad2ant1 | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> R e. Ring )  | 
						
						
							| 43 | 
							
								17
							 | 
							3ad2ant2 | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> N e. Fin )  | 
						
						
							| 44 | 
							
								3
							 | 
							eleq2i | 
							 |-  ( Y e. V <-> Y e. ( ( Base ` R ) ^m N ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							biimpi | 
							 |-  ( Y e. V -> Y e. ( ( Base ` R ) ^m N ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							adantl | 
							 |-  ( ( X e. B /\ Y e. V ) -> Y e. ( ( Base ` R ) ^m N ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							3ad2ant2 | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> Y e. ( ( Base ` R ) ^m N ) )  | 
						
						
							| 48 | 
							
								2
							 | 
							eleq2i | 
							 |-  ( X e. B <-> X e. ( Base ` A ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							biimpi | 
							 |-  ( X e. B -> X e. ( Base ` A ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							adantr | 
							 |-  ( ( X e. B /\ Y e. V ) -> X e. ( Base ` A ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							3ad2ant2 | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> X e. ( Base ` A ) )  | 
						
						
							| 52 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` A ) = ( Base ` A )  | 
						
						
							| 53 | 
							
								30 6 52
							 | 
							ringinvcl | 
							 |-  ( ( A e. Ring /\ X e. ( Unit ` A ) ) -> ( I ` X ) e. ( Base ` A ) )  | 
						
						
							| 54 | 
							
								29 34 53
							 | 
							syl2anc | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( I ` X ) e. ( Base ` A ) )  | 
						
						
							| 55 | 
							
								1 41 4 42 43 47 20 51 54
							 | 
							mavmulass | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( X ( R maMul <. N , N , N >. ) ( I ` X ) ) .x. Y ) = ( X .x. ( ( I ` X ) .x. Y ) ) )  | 
						
						
							| 56 | 
							
								1 41 4 42 43 47
							 | 
							1mavmul | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( 1r ` A ) .x. Y ) = Y )  | 
						
						
							| 57 | 
							
								40 55 56
							 | 
							3eqtr3d | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( X .x. ( ( I ` X ) .x. Y ) ) = Y )  | 
						
						
							| 58 | 
							
								13 57
							 | 
							sylan9eqr | 
							 |-  ( ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ Z = ( ( I ` X ) .x. Y ) ) -> ( X .x. Z ) = Y )  | 
						
						
							| 59 | 
							
								12 58
							 | 
							impbida | 
							 |-  ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( X .x. Z ) = Y <-> Z = ( ( I ` X ) .x. Y ) ) )  |