Step |
Hyp |
Ref |
Expression |
1 |
|
slesolex.a |
|- A = ( N Mat R ) |
2 |
|
slesolex.b |
|- B = ( Base ` A ) |
3 |
|
slesolex.v |
|- V = ( ( Base ` R ) ^m N ) |
4 |
|
slesolex.x |
|- .x. = ( R maVecMul <. N , N >. ) |
5 |
1 2
|
matrcl |
|- ( X e. B -> ( N e. Fin /\ R e. _V ) ) |
6 |
5
|
simpld |
|- ( X e. B -> N e. Fin ) |
7 |
|
simpr |
|- ( ( N =/= (/) /\ N e. Fin ) -> N e. Fin ) |
8 |
|
simpl |
|- ( ( N =/= (/) /\ N e. Fin ) -> N =/= (/) ) |
9 |
7 7 8
|
3jca |
|- ( ( N =/= (/) /\ N e. Fin ) -> ( N e. Fin /\ N e. Fin /\ N =/= (/) ) ) |
10 |
9
|
ex |
|- ( N =/= (/) -> ( N e. Fin -> ( N e. Fin /\ N e. Fin /\ N =/= (/) ) ) ) |
11 |
10
|
adantr |
|- ( ( N =/= (/) /\ R e. Ring ) -> ( N e. Fin -> ( N e. Fin /\ N e. Fin /\ N =/= (/) ) ) ) |
12 |
6 11
|
syl5com |
|- ( X e. B -> ( ( N =/= (/) /\ R e. Ring ) -> ( N e. Fin /\ N e. Fin /\ N =/= (/) ) ) ) |
13 |
12
|
adantr |
|- ( ( X e. B /\ Y e. V ) -> ( ( N =/= (/) /\ R e. Ring ) -> ( N e. Fin /\ N e. Fin /\ N =/= (/) ) ) ) |
14 |
13
|
impcom |
|- ( ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) -> ( N e. Fin /\ N e. Fin /\ N =/= (/) ) ) |
15 |
|
simpr |
|- ( ( N =/= (/) /\ R e. Ring ) -> R e. Ring ) |
16 |
|
simpr |
|- ( ( X e. B /\ Y e. V ) -> Y e. V ) |
17 |
15 16
|
anim12i |
|- ( ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) -> ( R e. Ring /\ Y e. V ) ) |
18 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
19 |
|
eqid |
|- ( ( Base ` R ) ^m ( N X. N ) ) = ( ( Base ` R ) ^m ( N X. N ) ) |
20 |
18 19 3 4 3
|
mavmulsolcl |
|- ( ( ( N e. Fin /\ N e. Fin /\ N =/= (/) ) /\ ( R e. Ring /\ Y e. V ) ) -> ( ( X .x. Z ) = Y -> Z e. V ) ) |
21 |
14 17 20
|
syl2anc |
|- ( ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) -> ( ( X .x. Z ) = Y -> Z e. V ) ) |