Metamath Proof Explorer


Theorem slesubsubbd

Description: Equivalence for the surreal less-than or equal relationship between differences. (Contributed by Scott Fenton, 7-Mar-2025)

Ref Expression
Hypotheses sltsubsubbd.1
|- ( ph -> A e. No )
sltsubsubbd.2
|- ( ph -> B e. No )
sltsubsubbd.3
|- ( ph -> C e. No )
sltsubsubbd.4
|- ( ph -> D e. No )
Assertion slesubsubbd
|- ( ph -> ( ( A -s C ) <_s ( B -s D ) <-> ( A -s B ) <_s ( C -s D ) ) )

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1
 |-  ( ph -> A e. No )
2 sltsubsubbd.2
 |-  ( ph -> B e. No )
3 sltsubsubbd.3
 |-  ( ph -> C e. No )
4 sltsubsubbd.4
 |-  ( ph -> D e. No )
5 2 1 4 3 sltsubsub3bd
 |-  ( ph -> ( ( B -s D )  ( C -s D ) 
6 5 notbid
 |-  ( ph -> ( -. ( B -s D )  -. ( C -s D ) 
7 1 3 subscld
 |-  ( ph -> ( A -s C ) e. No )
8 2 4 subscld
 |-  ( ph -> ( B -s D ) e. No )
9 slenlt
 |-  ( ( ( A -s C ) e. No /\ ( B -s D ) e. No ) -> ( ( A -s C ) <_s ( B -s D ) <-> -. ( B -s D ) 
10 7 8 9 syl2anc
 |-  ( ph -> ( ( A -s C ) <_s ( B -s D ) <-> -. ( B -s D ) 
11 1 2 subscld
 |-  ( ph -> ( A -s B ) e. No )
12 3 4 subscld
 |-  ( ph -> ( C -s D ) e. No )
13 slenlt
 |-  ( ( ( A -s B ) e. No /\ ( C -s D ) e. No ) -> ( ( A -s B ) <_s ( C -s D ) <-> -. ( C -s D ) 
14 11 12 13 syl2anc
 |-  ( ph -> ( ( A -s B ) <_s ( C -s D ) <-> -. ( C -s D ) 
15 6 10 14 3bitr4d
 |-  ( ph -> ( ( A -s C ) <_s ( B -s D ) <-> ( A -s B ) <_s ( C -s D ) ) )