Metamath Proof Explorer


Theorem slotsbhcdif

Description: The slots Base , Hom and comp are different. (Contributed by AV, 5-Mar-2020)

Ref Expression
Assertion slotsbhcdif
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) )

Proof

Step Hyp Ref Expression
1 df-base
 |-  Base = Slot 1
2 1nn
 |-  1 e. NN
3 1 2 ndxarg
 |-  ( Base ` ndx ) = 1
4 1re
 |-  1 e. RR
5 4nn0
 |-  4 e. NN0
6 1nn0
 |-  1 e. NN0
7 1lt10
 |-  1 < ; 1 0
8 2 5 6 7 declti
 |-  1 < ; 1 4
9 4 8 ltneii
 |-  1 =/= ; 1 4
10 homndx
 |-  ( Hom ` ndx ) = ; 1 4
11 9 10 neeqtrri
 |-  1 =/= ( Hom ` ndx )
12 3 11 eqnetri
 |-  ( Base ` ndx ) =/= ( Hom ` ndx )
13 5nn0
 |-  5 e. NN0
14 2 13 6 7 declti
 |-  1 < ; 1 5
15 4 14 ltneii
 |-  1 =/= ; 1 5
16 ccondx
 |-  ( comp ` ndx ) = ; 1 5
17 15 16 neeqtrri
 |-  1 =/= ( comp ` ndx )
18 3 17 eqnetri
 |-  ( Base ` ndx ) =/= ( comp ` ndx )
19 6 5 deccl
 |-  ; 1 4 e. NN0
20 19 nn0rei
 |-  ; 1 4 e. RR
21 5nn
 |-  5 e. NN
22 4lt5
 |-  4 < 5
23 6 5 21 22 declt
 |-  ; 1 4 < ; 1 5
24 20 23 ltneii
 |-  ; 1 4 =/= ; 1 5
25 24 16 neeqtrri
 |-  ; 1 4 =/= ( comp ` ndx )
26 10 25 eqnetri
 |-  ( Hom ` ndx ) =/= ( comp ` ndx )
27 12 18 26 3pm3.2i
 |-  ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) )