| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 5re |  |-  5 e. RR | 
						
							| 2 |  | 1nn |  |-  1 e. NN | 
						
							| 3 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 4 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 5 |  | 5lt10 |  |-  5 < ; 1 0 | 
						
							| 6 | 2 3 4 5 | declti |  |-  5 < ; 1 2 | 
						
							| 7 | 1 6 | gtneii |  |-  ; 1 2 =/= 5 | 
						
							| 8 |  | dsndx |  |-  ( dist ` ndx ) = ; 1 2 | 
						
							| 9 |  | scandx |  |-  ( Scalar ` ndx ) = 5 | 
						
							| 10 | 8 9 | neeq12i |  |-  ( ( dist ` ndx ) =/= ( Scalar ` ndx ) <-> ; 1 2 =/= 5 ) | 
						
							| 11 | 7 10 | mpbir |  |-  ( dist ` ndx ) =/= ( Scalar ` ndx ) | 
						
							| 12 |  | 6re |  |-  6 e. RR | 
						
							| 13 |  | 6nn0 |  |-  6 e. NN0 | 
						
							| 14 |  | 6lt10 |  |-  6 < ; 1 0 | 
						
							| 15 | 2 3 13 14 | declti |  |-  6 < ; 1 2 | 
						
							| 16 | 12 15 | gtneii |  |-  ; 1 2 =/= 6 | 
						
							| 17 |  | vscandx |  |-  ( .s ` ndx ) = 6 | 
						
							| 18 | 8 17 | neeq12i |  |-  ( ( dist ` ndx ) =/= ( .s ` ndx ) <-> ; 1 2 =/= 6 ) | 
						
							| 19 | 16 18 | mpbir |  |-  ( dist ` ndx ) =/= ( .s ` ndx ) | 
						
							| 20 |  | 8re |  |-  8 e. RR | 
						
							| 21 |  | 8nn0 |  |-  8 e. NN0 | 
						
							| 22 |  | 8lt10 |  |-  8 < ; 1 0 | 
						
							| 23 | 2 3 21 22 | declti |  |-  8 < ; 1 2 | 
						
							| 24 | 20 23 | gtneii |  |-  ; 1 2 =/= 8 | 
						
							| 25 |  | ipndx |  |-  ( .i ` ndx ) = 8 | 
						
							| 26 | 8 25 | neeq12i |  |-  ( ( dist ` ndx ) =/= ( .i ` ndx ) <-> ; 1 2 =/= 8 ) | 
						
							| 27 | 24 26 | mpbir |  |-  ( dist ` ndx ) =/= ( .i ` ndx ) | 
						
							| 28 | 11 19 27 | 3pm3.2i |  |-  ( ( dist ` ndx ) =/= ( Scalar ` ndx ) /\ ( dist ` ndx ) =/= ( .s ` ndx ) /\ ( dist ` ndx ) =/= ( .i ` ndx ) ) |