| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lngndx |
|- ( LineG ` ndx ) = ; 1 7 |
| 2 |
|
1re |
|- 1 e. RR |
| 3 |
|
1nn |
|- 1 e. NN |
| 4 |
|
7nn0 |
|- 7 e. NN0 |
| 5 |
|
1nn0 |
|- 1 e. NN0 |
| 6 |
|
1lt10 |
|- 1 < ; 1 0 |
| 7 |
3 4 5 6
|
declti |
|- 1 < ; 1 7 |
| 8 |
2 7
|
gtneii |
|- ; 1 7 =/= 1 |
| 9 |
|
basendx |
|- ( Base ` ndx ) = 1 |
| 10 |
8 9
|
neeqtrri |
|- ; 1 7 =/= ( Base ` ndx ) |
| 11 |
1 10
|
eqnetri |
|- ( LineG ` ndx ) =/= ( Base ` ndx ) |
| 12 |
|
2re |
|- 2 e. RR |
| 13 |
|
2nn0 |
|- 2 e. NN0 |
| 14 |
|
2lt10 |
|- 2 < ; 1 0 |
| 15 |
3 4 13 14
|
declti |
|- 2 < ; 1 7 |
| 16 |
12 15
|
gtneii |
|- ; 1 7 =/= 2 |
| 17 |
|
plusgndx |
|- ( +g ` ndx ) = 2 |
| 18 |
16 17
|
neeqtrri |
|- ; 1 7 =/= ( +g ` ndx ) |
| 19 |
1 18
|
eqnetri |
|- ( LineG ` ndx ) =/= ( +g ` ndx ) |
| 20 |
11 19
|
pm3.2i |
|- ( ( LineG ` ndx ) =/= ( Base ` ndx ) /\ ( LineG ` ndx ) =/= ( +g ` ndx ) ) |
| 21 |
|
6re |
|- 6 e. RR |
| 22 |
|
6nn0 |
|- 6 e. NN0 |
| 23 |
|
6lt10 |
|- 6 < ; 1 0 |
| 24 |
3 4 22 23
|
declti |
|- 6 < ; 1 7 |
| 25 |
21 24
|
gtneii |
|- ; 1 7 =/= 6 |
| 26 |
|
vscandx |
|- ( .s ` ndx ) = 6 |
| 27 |
25 26
|
neeqtrri |
|- ; 1 7 =/= ( .s ` ndx ) |
| 28 |
1 27
|
eqnetri |
|- ( LineG ` ndx ) =/= ( .s ` ndx ) |
| 29 |
|
2nn |
|- 2 e. NN |
| 30 |
5 29
|
decnncl |
|- ; 1 2 e. NN |
| 31 |
30
|
nnrei |
|- ; 1 2 e. RR |
| 32 |
|
7nn |
|- 7 e. NN |
| 33 |
|
2lt7 |
|- 2 < 7 |
| 34 |
5 13 32 33
|
declt |
|- ; 1 2 < ; 1 7 |
| 35 |
31 34
|
gtneii |
|- ; 1 7 =/= ; 1 2 |
| 36 |
|
dsndx |
|- ( dist ` ndx ) = ; 1 2 |
| 37 |
35 36
|
neeqtrri |
|- ; 1 7 =/= ( dist ` ndx ) |
| 38 |
1 37
|
eqnetri |
|- ( LineG ` ndx ) =/= ( dist ` ndx ) |
| 39 |
28 38
|
pm3.2i |
|- ( ( LineG ` ndx ) =/= ( .s ` ndx ) /\ ( LineG ` ndx ) =/= ( dist ` ndx ) ) |
| 40 |
20 39
|
pm3.2i |
|- ( ( ( LineG ` ndx ) =/= ( Base ` ndx ) /\ ( LineG ` ndx ) =/= ( +g ` ndx ) ) /\ ( ( LineG ` ndx ) =/= ( .s ` ndx ) /\ ( LineG ` ndx ) =/= ( dist ` ndx ) ) ) |