Metamath Proof Explorer


Theorem slt2addd

Description: Adding both sides of two surreal less-than relations. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses slt2addd.1
|- ( ph -> A e. No )
slt2addd.2
|- ( ph -> B e. No )
slt2addd.3
|- ( ph -> C e. No )
slt2addd.4
|- ( ph -> D e. No )
slt2addd.5
|- ( ph -> A 
slt2addd.6
|- ( ph -> B 
Assertion slt2addd
|- ( ph -> ( A +s B ) 

Proof

Step Hyp Ref Expression
1 slt2addd.1
 |-  ( ph -> A e. No )
2 slt2addd.2
 |-  ( ph -> B e. No )
3 slt2addd.3
 |-  ( ph -> C e. No )
4 slt2addd.4
 |-  ( ph -> D e. No )
5 slt2addd.5
 |-  ( ph -> A 
6 slt2addd.6
 |-  ( ph -> B 
7 1 2 addscld
 |-  ( ph -> ( A +s B ) e. No )
8 3 2 addscld
 |-  ( ph -> ( C +s B ) e. No )
9 3 4 addscld
 |-  ( ph -> ( C +s D ) e. No )
10 1 3 2 sltadd1d
 |-  ( ph -> ( A  ( A +s B ) 
11 5 10 mpbid
 |-  ( ph -> ( A +s B ) 
12 2 4 3 sltadd2d
 |-  ( ph -> ( B  ( C +s B ) 
13 6 12 mpbid
 |-  ( ph -> ( C +s B ) 
14 7 8 9 11 13 slttrd
 |-  ( ph -> ( A +s B )