Description: Adding both sides of two surreal less-than relations. (Contributed by Scott Fenton, 15-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | slt2addd.1 | |- ( ph -> A e. No ) |
|
slt2addd.2 | |- ( ph -> B e. No ) |
||
slt2addd.3 | |- ( ph -> C e. No ) |
||
slt2addd.4 | |- ( ph -> D e. No ) |
||
slt2addd.5 | |- ( ph -> A |
||
slt2addd.6 | |- ( ph -> B |
||
Assertion | slt2addd | |- ( ph -> ( A +s B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slt2addd.1 | |- ( ph -> A e. No ) |
|
2 | slt2addd.2 | |- ( ph -> B e. No ) |
|
3 | slt2addd.3 | |- ( ph -> C e. No ) |
|
4 | slt2addd.4 | |- ( ph -> D e. No ) |
|
5 | slt2addd.5 | |- ( ph -> A |
|
6 | slt2addd.6 | |- ( ph -> B |
|
7 | 1 2 | addscld | |- ( ph -> ( A +s B ) e. No ) |
8 | 3 2 | addscld | |- ( ph -> ( C +s B ) e. No ) |
9 | 3 4 | addscld | |- ( ph -> ( C +s D ) e. No ) |
10 | 1 3 2 | sltadd1d | |- ( ph -> ( A |
11 | 5 10 | mpbid | |- ( ph -> ( A +s B ) |
12 | 2 4 3 | sltadd2d | |- ( ph -> ( B |
13 | 6 12 | mpbid | |- ( ph -> ( C +s B ) |
14 | 7 8 9 11 13 | slttrd | |- ( ph -> ( A +s B ) |