Metamath Proof Explorer


Theorem sltadd1

Description: Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sltadd1
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A  ( A +s C ) 

Proof

Step Hyp Ref Expression
1 sltadd2
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A  ( C +s A ) 
2 addscom
 |-  ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) )
3 2 3adant2
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) )
4 addscom
 |-  ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) )
5 4 3adant1
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) )
6 3 5 breq12d
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C )  ( C +s A ) 
7 1 6 bitr4d
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A  ( A +s C )