Metamath Proof Explorer


Theorem sltaddpos1d

Description: Addition of a positive number increases the sum. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses sltaddpos.1
|- ( ph -> A e. No )
sltaddpos.2
|- ( ph -> B e. No )
Assertion sltaddpos1d
|- ( ph -> ( 0s  B 

Proof

Step Hyp Ref Expression
1 sltaddpos.1
 |-  ( ph -> A e. No )
2 sltaddpos.2
 |-  ( ph -> B e. No )
3 0sno
 |-  0s e. No
4 3 a1i
 |-  ( ph -> 0s e. No )
5 4 1 2 sltadd2d
 |-  ( ph -> ( 0s  ( B +s 0s ) 
6 2 addsridd
 |-  ( ph -> ( B +s 0s ) = B )
7 6 breq1d
 |-  ( ph -> ( ( B +s 0s )  B 
8 5 7 bitrd
 |-  ( ph -> ( 0s  B