Metamath Proof Explorer


Theorem sltaddpos2d

Description: Addition of a positive number increases the sum. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses sltaddpos.1
|- ( ph -> A e. No )
sltaddpos.2
|- ( ph -> B e. No )
Assertion sltaddpos2d
|- ( ph -> ( 0s  B 

Proof

Step Hyp Ref Expression
1 sltaddpos.1
 |-  ( ph -> A e. No )
2 sltaddpos.2
 |-  ( ph -> B e. No )
3 0sno
 |-  0s e. No
4 3 a1i
 |-  ( ph -> 0s e. No )
5 4 1 2 sltadd1d
 |-  ( ph -> ( 0s  ( 0s +s B ) 
6 addslid
 |-  ( B e. No -> ( 0s +s B ) = B )
7 2 6 syl
 |-  ( ph -> ( 0s +s B ) = B )
8 7 breq1d
 |-  ( ph -> ( ( 0s +s B )  B 
9 5 8 bitrd
 |-  ( ph -> ( 0s  B