Metamath Proof Explorer


Theorem sltaddsub2d

Description: Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025)

Ref Expression
Hypotheses sltsubadd.1
|- ( ph -> A e. No )
sltsubadd.2
|- ( ph -> B e. No )
sltsubadd.3
|- ( ph -> C e. No )
Assertion sltaddsub2d
|- ( ph -> ( ( A +s B )  B 

Proof

Step Hyp Ref Expression
1 sltsubadd.1
 |-  ( ph -> A e. No )
2 sltsubadd.2
 |-  ( ph -> B e. No )
3 sltsubadd.3
 |-  ( ph -> C e. No )
4 1 2 addscomd
 |-  ( ph -> ( A +s B ) = ( B +s A ) )
5 4 breq1d
 |-  ( ph -> ( ( A +s B )  ( B +s A ) 
6 2 1 3 sltaddsubd
 |-  ( ph -> ( ( B +s A )  B 
7 5 6 bitrd
 |-  ( ph -> ( ( A +s B )  B