| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltlen.1 |
|- ( ph -> A e. No ) |
| 2 |
|
sltlen.2 |
|- ( ph -> B e. No ) |
| 3 |
1
|
adantr |
|- ( ( ph /\ A A e. No ) |
| 4 |
2
|
adantr |
|- ( ( ph /\ A B e. No ) |
| 5 |
|
simpr |
|- ( ( ph /\ A A |
| 6 |
3 4 5
|
sltled |
|- ( ( ph /\ A A <_s B ) |
| 7 |
6
|
ex |
|- ( ph -> ( A A <_s B ) ) |
| 8 |
|
sltne |
|- ( ( A e. No /\ A B =/= A ) |
| 9 |
1 8
|
sylan |
|- ( ( ph /\ A B =/= A ) |
| 10 |
9
|
ex |
|- ( ph -> ( A B =/= A ) ) |
| 11 |
7 10
|
jcad |
|- ( ph -> ( A ( A <_s B /\ B =/= A ) ) ) |
| 12 |
|
sleloe |
|- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( A |
| 13 |
1 2 12
|
syl2anc |
|- ( ph -> ( A <_s B <-> ( A |
| 14 |
|
eqneqall |
|- ( B = A -> ( B =/= A -> A |
| 15 |
14
|
eqcoms |
|- ( A = B -> ( B =/= A -> A |
| 16 |
15
|
jao1i |
|- ( ( A ( B =/= A -> A |
| 17 |
13 16
|
biimtrdi |
|- ( ph -> ( A <_s B -> ( B =/= A -> A |
| 18 |
17
|
impd |
|- ( ph -> ( ( A <_s B /\ B =/= A ) -> A |
| 19 |
11 18
|
impbid |
|- ( ph -> ( A ( A <_s B /\ B =/= A ) ) ) |