Step |
Hyp |
Ref |
Expression |
1 |
|
sltlen.1 |
|- ( ph -> A e. No ) |
2 |
|
sltlen.2 |
|- ( ph -> B e. No ) |
3 |
1
|
adantr |
|- ( ( ph /\ A A e. No ) |
4 |
2
|
adantr |
|- ( ( ph /\ A B e. No ) |
5 |
|
simpr |
|- ( ( ph /\ A A |
6 |
3 4 5
|
sltled |
|- ( ( ph /\ A A <_s B ) |
7 |
6
|
ex |
|- ( ph -> ( A A <_s B ) ) |
8 |
|
sltne |
|- ( ( A e. No /\ A B =/= A ) |
9 |
1 8
|
sylan |
|- ( ( ph /\ A B =/= A ) |
10 |
9
|
ex |
|- ( ph -> ( A B =/= A ) ) |
11 |
7 10
|
jcad |
|- ( ph -> ( A ( A <_s B /\ B =/= A ) ) ) |
12 |
|
sleloe |
|- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( A |
13 |
1 2 12
|
syl2anc |
|- ( ph -> ( A <_s B <-> ( A |
14 |
|
eqneqall |
|- ( B = A -> ( B =/= A -> A |
15 |
14
|
eqcoms |
|- ( A = B -> ( B =/= A -> A |
16 |
15
|
jao1i |
|- ( ( A ( B =/= A -> A |
17 |
13 16
|
syl6bi |
|- ( ph -> ( A <_s B -> ( B =/= A -> A |
18 |
17
|
impd |
|- ( ph -> ( ( A <_s B /\ B =/= A ) -> A |
19 |
11 18
|
impbid |
|- ( ph -> ( A ( A <_s B /\ B =/= A ) ) ) |