Metamath Proof Explorer


Theorem sltlend

Description: Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses sltlen.1
|- ( ph -> A e. No )
sltlen.2
|- ( ph -> B e. No )
Assertion sltlend
|- ( ph -> ( A  ( A <_s B /\ B =/= A ) ) )

Proof

Step Hyp Ref Expression
1 sltlen.1
 |-  ( ph -> A e. No )
2 sltlen.2
 |-  ( ph -> B e. No )
3 1 adantr
 |-  ( ( ph /\ A  A e. No )
4 2 adantr
 |-  ( ( ph /\ A  B e. No )
5 simpr
 |-  ( ( ph /\ A  A 
6 3 4 5 sltled
 |-  ( ( ph /\ A  A <_s B )
7 6 ex
 |-  ( ph -> ( A  A <_s B ) )
8 sltne
 |-  ( ( A e. No /\ A  B =/= A )
9 1 8 sylan
 |-  ( ( ph /\ A  B =/= A )
10 9 ex
 |-  ( ph -> ( A  B =/= A ) )
11 7 10 jcad
 |-  ( ph -> ( A  ( A <_s B /\ B =/= A ) ) )
12 sleloe
 |-  ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( A 
13 1 2 12 syl2anc
 |-  ( ph -> ( A <_s B <-> ( A 
14 eqneqall
 |-  ( B = A -> ( B =/= A -> A 
15 14 eqcoms
 |-  ( A = B -> ( B =/= A -> A 
16 15 jao1i
 |-  ( ( A  ( B =/= A -> A 
17 13 16 syl6bi
 |-  ( ph -> ( A <_s B -> ( B =/= A -> A 
18 17 impd
 |-  ( ph -> ( ( A <_s B /\ B =/= A ) -> A 
19 11 18 impbid
 |-  ( ph -> ( A  ( A <_s B /\ B =/= A ) ) )