| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oldssno |
|- ( _Old ` ( bday ` X ) ) C_ No |
| 2 |
1
|
sseli |
|- ( x e. ( _Old ` ( bday ` X ) ) -> x e. No ) |
| 3 |
2
|
3ad2ant2 |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X x e. No ) |
| 4 |
|
simp1l1 |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X X e. No ) |
| 5 |
|
simp1l2 |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X Y e. No ) |
| 6 |
|
simp3 |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X x |
| 7 |
|
simp1r |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X X |
| 8 |
3 4 5 6 7
|
slttrd |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X x |
| 9 |
8
|
3exp |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( x e. ( _Old ` ( bday ` X ) ) -> ( x x |
| 10 |
9
|
imdistand |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( x e. ( _Old ` ( bday ` X ) ) /\ x ( x e. ( _Old ` ( bday ` X ) ) /\ x |
| 11 |
|
fveq2 |
|- ( ( bday ` X ) = ( bday ` Y ) -> ( _Old ` ( bday ` X ) ) = ( _Old ` ( bday ` Y ) ) ) |
| 12 |
11
|
3ad2ant3 |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( _Old ` ( bday ` X ) ) = ( _Old ` ( bday ` Y ) ) ) |
| 13 |
12
|
adantr |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( _Old ` ( bday ` X ) ) = ( _Old ` ( bday ` Y ) ) ) |
| 14 |
13
|
eleq2d |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( x e. ( _Old ` ( bday ` X ) ) <-> x e. ( _Old ` ( bday ` Y ) ) ) ) |
| 15 |
14
|
anbi1d |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( x e. ( _Old ` ( bday ` X ) ) /\ x ( x e. ( _Old ` ( bday ` Y ) ) /\ x |
| 16 |
10 15
|
sylibd |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( x e. ( _Old ` ( bday ` X ) ) /\ x ( x e. ( _Old ` ( bday ` Y ) ) /\ x |
| 17 |
|
leftval |
|- ( _Left ` X ) = { x e. ( _Old ` ( bday ` X ) ) | x |
| 18 |
17
|
a1i |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( _Left ` X ) = { x e. ( _Old ` ( bday ` X ) ) | x |
| 19 |
18
|
eleq2d |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( x e. ( _Left ` X ) <-> x e. { x e. ( _Old ` ( bday ` X ) ) | x |
| 20 |
|
rabid |
|- ( x e. { x e. ( _Old ` ( bday ` X ) ) | x ( x e. ( _Old ` ( bday ` X ) ) /\ x |
| 21 |
19 20
|
bitrdi |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( x e. ( _Left ` X ) <-> ( x e. ( _Old ` ( bday ` X ) ) /\ x |
| 22 |
|
leftval |
|- ( _Left ` Y ) = { x e. ( _Old ` ( bday ` Y ) ) | x |
| 23 |
22
|
a1i |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( _Left ` Y ) = { x e. ( _Old ` ( bday ` Y ) ) | x |
| 24 |
23
|
eleq2d |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( x e. ( _Left ` Y ) <-> x e. { x e. ( _Old ` ( bday ` Y ) ) | x |
| 25 |
|
rabid |
|- ( x e. { x e. ( _Old ` ( bday ` Y ) ) | x ( x e. ( _Old ` ( bday ` Y ) ) /\ x |
| 26 |
24 25
|
bitrdi |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( x e. ( _Left ` Y ) <-> ( x e. ( _Old ` ( bday ` Y ) ) /\ x |
| 27 |
16 21 26
|
3imtr4d |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( x e. ( _Left ` X ) -> x e. ( _Left ` Y ) ) ) |
| 28 |
27
|
ssrdv |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( _Left ` X ) C_ ( _Left ` Y ) ) |
| 29 |
|
sltirr |
|- ( Y e. No -> -. Y |
| 30 |
29
|
3ad2ant2 |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> -. Y |
| 31 |
|
breq1 |
|- ( X = Y -> ( X Y |
| 32 |
31
|
notbid |
|- ( X = Y -> ( -. X -. Y |
| 33 |
30 32
|
syl5ibrcom |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( X = Y -> -. X |
| 34 |
33
|
con2d |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( X -. X = Y ) ) |
| 35 |
34
|
imp |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X -. X = Y ) |
| 36 |
|
simpr |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( _Left ` X ) = ( _Left ` Y ) ) |
| 37 |
|
lruneq |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( ( _Left ` X ) u. ( _Right ` X ) ) = ( ( _Left ` Y ) u. ( _Right ` Y ) ) ) |
| 38 |
37
|
adantr |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( _Left ` X ) u. ( _Right ` X ) ) = ( ( _Left ` Y ) u. ( _Right ` Y ) ) ) |
| 39 |
38
|
adantr |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( _Left ` X ) u. ( _Right ` X ) ) = ( ( _Left ` Y ) u. ( _Right ` Y ) ) ) |
| 40 |
39 36
|
difeq12d |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( ( _Left ` X ) u. ( _Right ` X ) ) \ ( _Left ` X ) ) = ( ( ( _Left ` Y ) u. ( _Right ` Y ) ) \ ( _Left ` Y ) ) ) |
| 41 |
|
difundir |
|- ( ( ( _Left ` X ) u. ( _Right ` X ) ) \ ( _Left ` X ) ) = ( ( ( _Left ` X ) \ ( _Left ` X ) ) u. ( ( _Right ` X ) \ ( _Left ` X ) ) ) |
| 42 |
|
difid |
|- ( ( _Left ` X ) \ ( _Left ` X ) ) = (/) |
| 43 |
42
|
uneq1i |
|- ( ( ( _Left ` X ) \ ( _Left ` X ) ) u. ( ( _Right ` X ) \ ( _Left ` X ) ) ) = ( (/) u. ( ( _Right ` X ) \ ( _Left ` X ) ) ) |
| 44 |
|
0un |
|- ( (/) u. ( ( _Right ` X ) \ ( _Left ` X ) ) ) = ( ( _Right ` X ) \ ( _Left ` X ) ) |
| 45 |
41 43 44
|
3eqtri |
|- ( ( ( _Left ` X ) u. ( _Right ` X ) ) \ ( _Left ` X ) ) = ( ( _Right ` X ) \ ( _Left ` X ) ) |
| 46 |
|
incom |
|- ( ( _Left ` X ) i^i ( _Right ` X ) ) = ( ( _Right ` X ) i^i ( _Left ` X ) ) |
| 47 |
|
lltropt |
|- ( _Left ` X ) < |
| 48 |
|
ssltdisj |
|- ( ( _Left ` X ) < ( ( _Left ` X ) i^i ( _Right ` X ) ) = (/) ) |
| 49 |
47 48
|
mp1i |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( _Left ` X ) i^i ( _Right ` X ) ) = (/) ) |
| 50 |
46 49
|
eqtr3id |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( _Right ` X ) i^i ( _Left ` X ) ) = (/) ) |
| 51 |
|
disjdif2 |
|- ( ( ( _Right ` X ) i^i ( _Left ` X ) ) = (/) -> ( ( _Right ` X ) \ ( _Left ` X ) ) = ( _Right ` X ) ) |
| 52 |
50 51
|
syl |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( _Right ` X ) \ ( _Left ` X ) ) = ( _Right ` X ) ) |
| 53 |
45 52
|
eqtrid |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( ( _Left ` X ) u. ( _Right ` X ) ) \ ( _Left ` X ) ) = ( _Right ` X ) ) |
| 54 |
|
difundir |
|- ( ( ( _Left ` Y ) u. ( _Right ` Y ) ) \ ( _Left ` Y ) ) = ( ( ( _Left ` Y ) \ ( _Left ` Y ) ) u. ( ( _Right ` Y ) \ ( _Left ` Y ) ) ) |
| 55 |
|
difid |
|- ( ( _Left ` Y ) \ ( _Left ` Y ) ) = (/) |
| 56 |
55
|
uneq1i |
|- ( ( ( _Left ` Y ) \ ( _Left ` Y ) ) u. ( ( _Right ` Y ) \ ( _Left ` Y ) ) ) = ( (/) u. ( ( _Right ` Y ) \ ( _Left ` Y ) ) ) |
| 57 |
|
0un |
|- ( (/) u. ( ( _Right ` Y ) \ ( _Left ` Y ) ) ) = ( ( _Right ` Y ) \ ( _Left ` Y ) ) |
| 58 |
54 56 57
|
3eqtri |
|- ( ( ( _Left ` Y ) u. ( _Right ` Y ) ) \ ( _Left ` Y ) ) = ( ( _Right ` Y ) \ ( _Left ` Y ) ) |
| 59 |
|
incom |
|- ( ( _Left ` Y ) i^i ( _Right ` Y ) ) = ( ( _Right ` Y ) i^i ( _Left ` Y ) ) |
| 60 |
|
lltropt |
|- ( _Left ` Y ) < |
| 61 |
|
ssltdisj |
|- ( ( _Left ` Y ) < ( ( _Left ` Y ) i^i ( _Right ` Y ) ) = (/) ) |
| 62 |
60 61
|
mp1i |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( _Left ` Y ) i^i ( _Right ` Y ) ) = (/) ) |
| 63 |
59 62
|
eqtr3id |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( _Right ` Y ) i^i ( _Left ` Y ) ) = (/) ) |
| 64 |
|
disjdif2 |
|- ( ( ( _Right ` Y ) i^i ( _Left ` Y ) ) = (/) -> ( ( _Right ` Y ) \ ( _Left ` Y ) ) = ( _Right ` Y ) ) |
| 65 |
63 64
|
syl |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( _Right ` Y ) \ ( _Left ` Y ) ) = ( _Right ` Y ) ) |
| 66 |
58 65
|
eqtrid |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( ( _Left ` Y ) u. ( _Right ` Y ) ) \ ( _Left ` Y ) ) = ( _Right ` Y ) ) |
| 67 |
40 53 66
|
3eqtr3d |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( _Right ` X ) = ( _Right ` Y ) ) |
| 68 |
36 67
|
oveq12d |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( _Left ` X ) |s ( _Right ` X ) ) = ( ( _Left ` Y ) |s ( _Right ` Y ) ) ) |
| 69 |
|
simpll1 |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X X e. No ) |
| 70 |
|
lrcut |
|- ( X e. No -> ( ( _Left ` X ) |s ( _Right ` X ) ) = X ) |
| 71 |
69 70
|
syl |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( _Left ` X ) |s ( _Right ` X ) ) = X ) |
| 72 |
|
simpll2 |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X Y e. No ) |
| 73 |
|
lrcut |
|- ( Y e. No -> ( ( _Left ` Y ) |s ( _Right ` Y ) ) = Y ) |
| 74 |
72 73
|
syl |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( ( _Left ` Y ) |s ( _Right ` Y ) ) = Y ) |
| 75 |
68 71 74
|
3eqtr3d |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X X = Y ) |
| 76 |
35 75
|
mtand |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X -. ( _Left ` X ) = ( _Left ` Y ) ) |
| 77 |
|
dfpss2 |
|- ( ( _Left ` X ) C. ( _Left ` Y ) <-> ( ( _Left ` X ) C_ ( _Left ` Y ) /\ -. ( _Left ` X ) = ( _Left ` Y ) ) ) |
| 78 |
28 76 77
|
sylanbrc |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ X ( _Left ` X ) C. ( _Left ` Y ) ) |
| 79 |
78
|
ex |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( X ( _Left ` X ) C. ( _Left ` Y ) ) ) |
| 80 |
|
dfpss3 |
|- ( ( _Left ` X ) C. ( _Left ` Y ) <-> ( ( _Left ` X ) C_ ( _Left ` Y ) /\ -. ( _Left ` Y ) C_ ( _Left ` X ) ) ) |
| 81 |
|
ssdif0 |
|- ( ( _Left ` Y ) C_ ( _Left ` X ) <-> ( ( _Left ` Y ) \ ( _Left ` X ) ) = (/) ) |
| 82 |
81
|
necon3bbii |
|- ( -. ( _Left ` Y ) C_ ( _Left ` X ) <-> ( ( _Left ` Y ) \ ( _Left ` X ) ) =/= (/) ) |
| 83 |
|
n0 |
|- ( ( ( _Left ` Y ) \ ( _Left ` X ) ) =/= (/) <-> E. x x e. ( ( _Left ` Y ) \ ( _Left ` X ) ) ) |
| 84 |
82 83
|
bitri |
|- ( -. ( _Left ` Y ) C_ ( _Left ` X ) <-> E. x x e. ( ( _Left ` Y ) \ ( _Left ` X ) ) ) |
| 85 |
|
eldif |
|- ( x e. ( ( _Left ` Y ) \ ( _Left ` X ) ) <-> ( x e. ( _Left ` Y ) /\ -. x e. ( _Left ` X ) ) ) |
| 86 |
22
|
a1i |
|- ( Y e. No -> ( _Left ` Y ) = { x e. ( _Old ` ( bday ` Y ) ) | x |
| 87 |
86
|
eleq2d |
|- ( Y e. No -> ( x e. ( _Left ` Y ) <-> x e. { x e. ( _Old ` ( bday ` Y ) ) | x |
| 88 |
87 25
|
bitrdi |
|- ( Y e. No -> ( x e. ( _Left ` Y ) <-> ( x e. ( _Old ` ( bday ` Y ) ) /\ x |
| 89 |
17
|
a1i |
|- ( X e. No -> ( _Left ` X ) = { x e. ( _Old ` ( bday ` X ) ) | x |
| 90 |
89
|
eleq2d |
|- ( X e. No -> ( x e. ( _Left ` X ) <-> x e. { x e. ( _Old ` ( bday ` X ) ) | x |
| 91 |
90 20
|
bitrdi |
|- ( X e. No -> ( x e. ( _Left ` X ) <-> ( x e. ( _Old ` ( bday ` X ) ) /\ x |
| 92 |
91
|
notbid |
|- ( X e. No -> ( -. x e. ( _Left ` X ) <-> -. ( x e. ( _Old ` ( bday ` X ) ) /\ x |
| 93 |
|
ianor |
|- ( -. ( x e. ( _Old ` ( bday ` X ) ) /\ x ( -. x e. ( _Old ` ( bday ` X ) ) \/ -. x |
| 94 |
92 93
|
bitrdi |
|- ( X e. No -> ( -. x e. ( _Left ` X ) <-> ( -. x e. ( _Old ` ( bday ` X ) ) \/ -. x |
| 95 |
88 94
|
bi2anan9r |
|- ( ( X e. No /\ Y e. No ) -> ( ( x e. ( _Left ` Y ) /\ -. x e. ( _Left ` X ) ) <-> ( ( x e. ( _Old ` ( bday ` Y ) ) /\ x |
| 96 |
95
|
3adant3 |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( ( x e. ( _Left ` Y ) /\ -. x e. ( _Left ` X ) ) <-> ( ( x e. ( _Old ` ( bday ` Y ) ) /\ x |
| 97 |
|
simprl |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x x e. ( _Old ` ( bday ` Y ) ) ) |
| 98 |
|
simpl3 |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x ( bday ` X ) = ( bday ` Y ) ) |
| 99 |
98
|
fveq2d |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x ( _Old ` ( bday ` X ) ) = ( _Old ` ( bday ` Y ) ) ) |
| 100 |
97 99
|
eleqtrrd |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x x e. ( _Old ` ( bday ` X ) ) ) |
| 101 |
100
|
pm2.24d |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x ( -. x e. ( _Old ` ( bday ` X ) ) -> X |
| 102 |
|
simpll1 |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x X e. No ) |
| 103 |
|
oldssno |
|- ( _Old ` ( bday ` Y ) ) C_ No |
| 104 |
103 97
|
sselid |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x x e. No ) |
| 105 |
104
|
adantr |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x x e. No ) |
| 106 |
|
simpll2 |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x Y e. No ) |
| 107 |
|
simpl1 |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x X e. No ) |
| 108 |
|
slenlt |
|- ( ( X e. No /\ x e. No ) -> ( X <_s x <-> -. x |
| 109 |
107 104 108
|
syl2anc |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x ( X <_s x <-> -. x |
| 110 |
109
|
biimpar |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x X <_s x ) |
| 111 |
|
simplrr |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x x |
| 112 |
102 105 106 110 111
|
slelttrd |
|- ( ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x X |
| 113 |
112
|
ex |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x ( -. x X |
| 114 |
101 113
|
jaod |
|- ( ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) /\ ( x e. ( _Old ` ( bday ` Y ) ) /\ x ( ( -. x e. ( _Old ` ( bday ` X ) ) \/ -. x X |
| 115 |
114
|
expimpd |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( ( ( x e. ( _Old ` ( bday ` Y ) ) /\ x X |
| 116 |
96 115
|
sylbid |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( ( x e. ( _Left ` Y ) /\ -. x e. ( _Left ` X ) ) -> X |
| 117 |
85 116
|
biimtrid |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( x e. ( ( _Left ` Y ) \ ( _Left ` X ) ) -> X |
| 118 |
117
|
exlimdv |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( E. x x e. ( ( _Left ` Y ) \ ( _Left ` X ) ) -> X |
| 119 |
84 118
|
biimtrid |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( -. ( _Left ` Y ) C_ ( _Left ` X ) -> X |
| 120 |
119
|
adantld |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( ( ( _Left ` X ) C_ ( _Left ` Y ) /\ -. ( _Left ` Y ) C_ ( _Left ` X ) ) -> X |
| 121 |
80 120
|
biimtrid |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( ( _Left ` X ) C. ( _Left ` Y ) -> X |
| 122 |
79 121
|
impbid |
|- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( X ( _Left ` X ) C. ( _Left ` Y ) ) ) |