Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of Conway p. 19. (Contributed by Scott Fenton, 5-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | sltmul | |- ( ( ( A e. No /\ B e. No ) /\ ( C e. No /\ D e. No ) ) -> ( ( A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno | |- 0s e. No |
|
2 | 1 1 | pm3.2i | |- ( 0s e. No /\ 0s e. No ) |
3 | mulsprop | |- ( ( ( 0s e. No /\ 0s e. No ) /\ ( A e. No /\ B e. No ) /\ ( C e. No /\ D e. No ) ) -> ( ( 0s x.s 0s ) e. No /\ ( ( A |
|
4 | 2 3 | mp3an1 | |- ( ( ( A e. No /\ B e. No ) /\ ( C e. No /\ D e. No ) ) -> ( ( 0s x.s 0s ) e. No /\ ( ( A |
5 | 4 | simprd | |- ( ( ( A e. No /\ B e. No ) /\ ( C e. No /\ D e. No ) ) -> ( ( A |