Metamath Proof Explorer


Theorem sltmul

Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of Conway p. 19. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Assertion sltmul
|- ( ( ( A e. No /\ B e. No ) /\ ( C e. No /\ D e. No ) ) -> ( ( A  ( ( A x.s D ) -s ( A x.s C ) ) 

Proof

Step Hyp Ref Expression
1 0sno
 |-  0s e. No
2 1 1 pm3.2i
 |-  ( 0s e. No /\ 0s e. No )
3 mulsprop
 |-  ( ( ( 0s e. No /\ 0s e. No ) /\ ( A e. No /\ B e. No ) /\ ( C e. No /\ D e. No ) ) -> ( ( 0s x.s 0s ) e. No /\ ( ( A  ( ( A x.s D ) -s ( A x.s C ) ) 
4 2 3 mp3an1
 |-  ( ( ( A e. No /\ B e. No ) /\ ( C e. No /\ D e. No ) ) -> ( ( 0s x.s 0s ) e. No /\ ( ( A  ( ( A x.s D ) -s ( A x.s C ) ) 
5 4 simprd
 |-  ( ( ( A e. No /\ B e. No ) /\ ( C e. No /\ D e. No ) ) -> ( ( A  ( ( A x.s D ) -s ( A x.s C ) )