Metamath Proof Explorer


Theorem sltmul12ad

Description: Comparison of the product of two positive surreals. (Contributed by Scott Fenton, 17-Apr-2025)

Ref Expression
Hypotheses sltmul12ad.1
|- ( ph -> A e. No )
sltmul12ad.2
|- ( ph -> B e. No )
sltmul12ad.3
|- ( ph -> C e. No )
sltmul12ad.4
|- ( ph -> D e. No )
sltmul12ad.5
|- ( ph -> 0s <_s A )
sltmul12ad.6
|- ( ph -> A 
sltmul12ad.7
|- ( ph -> 0s <_s C )
sltmul12ad.8
|- ( ph -> C 
Assertion sltmul12ad
|- ( ph -> ( A x.s C ) 

Proof

Step Hyp Ref Expression
1 sltmul12ad.1
 |-  ( ph -> A e. No )
2 sltmul12ad.2
 |-  ( ph -> B e. No )
3 sltmul12ad.3
 |-  ( ph -> C e. No )
4 sltmul12ad.4
 |-  ( ph -> D e. No )
5 sltmul12ad.5
 |-  ( ph -> 0s <_s A )
6 sltmul12ad.6
 |-  ( ph -> A 
7 sltmul12ad.7
 |-  ( ph -> 0s <_s C )
8 sltmul12ad.8
 |-  ( ph -> C 
9 1 3 mulscld
 |-  ( ph -> ( A x.s C ) e. No )
10 2 3 mulscld
 |-  ( ph -> ( B x.s C ) e. No )
11 2 4 mulscld
 |-  ( ph -> ( B x.s D ) e. No )
12 1 2 6 sltled
 |-  ( ph -> A <_s B )
13 1 2 3 7 12 slemul1ad
 |-  ( ph -> ( A x.s C ) <_s ( B x.s C ) )
14 0sno
 |-  0s e. No
15 14 a1i
 |-  ( ph -> 0s e. No )
16 15 1 2 5 6 slelttrd
 |-  ( ph -> 0s 
17 3 4 2 16 sltmul2d
 |-  ( ph -> ( C  ( B x.s C ) 
18 8 17 mpbid
 |-  ( ph -> ( B x.s C ) 
19 9 10 11 13 18 slelttrd
 |-  ( ph -> ( A x.s C )