Description: Comparison of the product of two positive surreals. (Contributed by Scott Fenton, 17-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sltmul12ad.1 | |- ( ph -> A e. No ) |
|
sltmul12ad.2 | |- ( ph -> B e. No ) |
||
sltmul12ad.3 | |- ( ph -> C e. No ) |
||
sltmul12ad.4 | |- ( ph -> D e. No ) |
||
sltmul12ad.5 | |- ( ph -> 0s <_s A ) |
||
sltmul12ad.6 | |- ( ph -> A |
||
sltmul12ad.7 | |- ( ph -> 0s <_s C ) |
||
sltmul12ad.8 | |- ( ph -> C |
||
Assertion | sltmul12ad | |- ( ph -> ( A x.s C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltmul12ad.1 | |- ( ph -> A e. No ) |
|
2 | sltmul12ad.2 | |- ( ph -> B e. No ) |
|
3 | sltmul12ad.3 | |- ( ph -> C e. No ) |
|
4 | sltmul12ad.4 | |- ( ph -> D e. No ) |
|
5 | sltmul12ad.5 | |- ( ph -> 0s <_s A ) |
|
6 | sltmul12ad.6 | |- ( ph -> A |
|
7 | sltmul12ad.7 | |- ( ph -> 0s <_s C ) |
|
8 | sltmul12ad.8 | |- ( ph -> C |
|
9 | 1 3 | mulscld | |- ( ph -> ( A x.s C ) e. No ) |
10 | 2 3 | mulscld | |- ( ph -> ( B x.s C ) e. No ) |
11 | 2 4 | mulscld | |- ( ph -> ( B x.s D ) e. No ) |
12 | 1 2 6 | sltled | |- ( ph -> A <_s B ) |
13 | 1 2 3 7 12 | slemul1ad | |- ( ph -> ( A x.s C ) <_s ( B x.s C ) ) |
14 | 0sno | |- 0s e. No |
|
15 | 14 | a1i | |- ( ph -> 0s e. No ) |
16 | 15 1 2 5 6 | slelttrd | |- ( ph -> 0s |
17 | 3 4 2 16 | sltmul2d | |- ( ph -> ( C |
18 | 8 17 | mpbid | |- ( ph -> ( B x.s C ) |
19 | 9 10 11 13 18 | slelttrd | |- ( ph -> ( A x.s C ) |