Metamath Proof Explorer


Theorem sltmul1d

Description: Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses sltmul12d.1
|- ( ph -> A e. No )
sltmul12d.2
|- ( ph -> B e. No )
sltmul12d.3
|- ( ph -> C e. No )
sltmul12d.4
|- ( ph -> 0s 
Assertion sltmul1d
|- ( ph -> ( A  ( A x.s C ) 

Proof

Step Hyp Ref Expression
1 sltmul12d.1
 |-  ( ph -> A e. No )
2 sltmul12d.2
 |-  ( ph -> B e. No )
3 sltmul12d.3
 |-  ( ph -> C e. No )
4 sltmul12d.4
 |-  ( ph -> 0s 
5 1 2 3 4 sltmul2d
 |-  ( ph -> ( A  ( C x.s A ) 
6 1 3 mulscomd
 |-  ( ph -> ( A x.s C ) = ( C x.s A ) )
7 2 3 mulscomd
 |-  ( ph -> ( B x.s C ) = ( C x.s B ) )
8 6 7 breq12d
 |-  ( ph -> ( ( A x.s C )  ( C x.s A ) 
9 5 8 bitr4d
 |-  ( ph -> ( A  ( A x.s C )