Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1l |
|- ( ( ( ( A e. No /\ 0s A e. No ) |
2 |
|
simpl3 |
|- ( ( ( ( A e. No /\ 0s C e. No ) |
3 |
|
simpl2 |
|- ( ( ( ( A e. No /\ 0s B e. No ) |
4 |
2 3
|
subscld |
|- ( ( ( ( A e. No /\ 0s ( C -s B ) e. No ) |
5 |
|
simpl1r |
|- ( ( ( ( A e. No /\ 0s 0s |
6 |
|
simp2 |
|- ( ( ( A e. No /\ 0s B e. No ) |
7 |
|
simp3 |
|- ( ( ( A e. No /\ 0s C e. No ) |
8 |
6 7
|
posdifsd |
|- ( ( ( A e. No /\ 0s ( B 0s |
9 |
8
|
biimpa |
|- ( ( ( ( A e. No /\ 0s 0s |
10 |
1 4 5 9
|
mulsgt0d |
|- ( ( ( ( A e. No /\ 0s 0s |
11 |
1 2 3
|
subsdid |
|- ( ( ( ( A e. No /\ 0s ( A x.s ( C -s B ) ) = ( ( A x.s C ) -s ( A x.s B ) ) ) |
12 |
10 11
|
breqtrd |
|- ( ( ( ( A e. No /\ 0s 0s |
13 |
1 3
|
mulscld |
|- ( ( ( ( A e. No /\ 0s ( A x.s B ) e. No ) |
14 |
1 2
|
mulscld |
|- ( ( ( ( A e. No /\ 0s ( A x.s C ) e. No ) |
15 |
13 14
|
posdifsd |
|- ( ( ( ( A e. No /\ 0s ( ( A x.s B ) 0s |
16 |
12 15
|
mpbird |
|- ( ( ( ( A e. No /\ 0s ( A x.s B ) |
17 |
|
simp1l |
|- ( ( ( A e. No /\ 0s A e. No ) |
18 |
17 7
|
mulscld |
|- ( ( ( A e. No /\ 0s ( A x.s C ) e. No ) |
19 |
|
sltirr |
|- ( ( A x.s C ) e. No -> -. ( A x.s C ) |
20 |
18 19
|
syl |
|- ( ( ( A e. No /\ 0s -. ( A x.s C ) |
21 |
|
oveq2 |
|- ( B = C -> ( A x.s B ) = ( A x.s C ) ) |
22 |
21
|
breq1d |
|- ( B = C -> ( ( A x.s B ) ( A x.s C ) |
23 |
22
|
notbid |
|- ( B = C -> ( -. ( A x.s B ) -. ( A x.s C ) |
24 |
20 23
|
syl5ibrcom |
|- ( ( ( A e. No /\ 0s ( B = C -> -. ( A x.s B ) |
25 |
24
|
con2d |
|- ( ( ( A e. No /\ 0s ( ( A x.s B ) -. B = C ) ) |
26 |
25
|
imp |
|- ( ( ( ( A e. No /\ 0s -. B = C ) |
27 |
17 6
|
mulscld |
|- ( ( ( A e. No /\ 0s ( A x.s B ) e. No ) |
28 |
|
sltasym |
|- ( ( ( A x.s B ) e. No /\ ( A x.s C ) e. No ) -> ( ( A x.s B ) -. ( A x.s C ) |
29 |
27 18 28
|
syl2anc |
|- ( ( ( A e. No /\ 0s ( ( A x.s B ) -. ( A x.s C ) |
30 |
29
|
imp |
|- ( ( ( ( A e. No /\ 0s -. ( A x.s C ) |
31 |
|
simpl1l |
|- ( ( ( ( A e. No /\ 0s A e. No ) |
32 |
31
|
adantr |
|- ( ( ( ( ( A e. No /\ 0s A e. No ) |
33 |
|
simpll2 |
|- ( ( ( ( ( A e. No /\ 0s B e. No ) |
34 |
|
simpll3 |
|- ( ( ( ( ( A e. No /\ 0s C e. No ) |
35 |
33 34
|
subscld |
|- ( ( ( ( ( A e. No /\ 0s ( B -s C ) e. No ) |
36 |
|
simpl1r |
|- ( ( ( ( A e. No /\ 0s 0s |
37 |
36
|
adantr |
|- ( ( ( ( ( A e. No /\ 0s 0s |
38 |
|
simpr |
|- ( ( ( ( ( A e. No /\ 0s 0s |
39 |
32 35 37 38
|
mulsgt0d |
|- ( ( ( ( ( A e. No /\ 0s 0s |
40 |
32 33 34
|
subsdid |
|- ( ( ( ( ( A e. No /\ 0s ( A x.s ( B -s C ) ) = ( ( A x.s B ) -s ( A x.s C ) ) ) |
41 |
40
|
breq2d |
|- ( ( ( ( ( A e. No /\ 0s ( 0s 0s |
42 |
18
|
ad2antrr |
|- ( ( ( ( ( A e. No /\ 0s ( A x.s C ) e. No ) |
43 |
27
|
ad2antrr |
|- ( ( ( ( ( A e. No /\ 0s ( A x.s B ) e. No ) |
44 |
42 43
|
posdifsd |
|- ( ( ( ( ( A e. No /\ 0s ( ( A x.s C ) 0s |
45 |
41 44
|
bitr4d |
|- ( ( ( ( ( A e. No /\ 0s ( 0s ( A x.s C ) |
46 |
39 45
|
mpbid |
|- ( ( ( ( ( A e. No /\ 0s ( A x.s C ) |
47 |
30 46
|
mtand |
|- ( ( ( ( A e. No /\ 0s -. 0s |
48 |
|
simpl3 |
|- ( ( ( ( A e. No /\ 0s C e. No ) |
49 |
|
simpl2 |
|- ( ( ( ( A e. No /\ 0s B e. No ) |
50 |
48 49
|
posdifsd |
|- ( ( ( ( A e. No /\ 0s ( C 0s |
51 |
47 50
|
mtbird |
|- ( ( ( ( A e. No /\ 0s -. C |
52 |
|
sltlin |
|- ( ( B e. No /\ C e. No ) -> ( B |
53 |
49 48 52
|
syl2anc |
|- ( ( ( ( A e. No /\ 0s ( B |
54 |
26 51 53
|
ecase23d |
|- ( ( ( ( A e. No /\ 0s B |
55 |
16 54
|
impbida |
|- ( ( ( A e. No /\ 0s ( B ( A x.s B ) |