Metamath Proof Explorer


Theorem sltmul2

Description: Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Assertion sltmul2
|- ( ( ( A e. No /\ 0s  ( B  ( A x.s B ) 

Proof

Step Hyp Ref Expression
1 simpl1l
 |-  ( ( ( ( A e. No /\ 0s  A e. No )
2 simpl3
 |-  ( ( ( ( A e. No /\ 0s  C e. No )
3 simpl2
 |-  ( ( ( ( A e. No /\ 0s  B e. No )
4 2 3 subscld
 |-  ( ( ( ( A e. No /\ 0s  ( C -s B ) e. No )
5 simpl1r
 |-  ( ( ( ( A e. No /\ 0s  0s 
6 simp2
 |-  ( ( ( A e. No /\ 0s  B e. No )
7 simp3
 |-  ( ( ( A e. No /\ 0s  C e. No )
8 6 7 posdifsd
 |-  ( ( ( A e. No /\ 0s  ( B  0s 
9 8 biimpa
 |-  ( ( ( ( A e. No /\ 0s  0s 
10 1 4 5 9 mulsgt0d
 |-  ( ( ( ( A e. No /\ 0s  0s 
11 1 2 3 subsdid
 |-  ( ( ( ( A e. No /\ 0s  ( A x.s ( C -s B ) ) = ( ( A x.s C ) -s ( A x.s B ) ) )
12 10 11 breqtrd
 |-  ( ( ( ( A e. No /\ 0s  0s 
13 1 3 mulscld
 |-  ( ( ( ( A e. No /\ 0s  ( A x.s B ) e. No )
14 1 2 mulscld
 |-  ( ( ( ( A e. No /\ 0s  ( A x.s C ) e. No )
15 13 14 posdifsd
 |-  ( ( ( ( A e. No /\ 0s  ( ( A x.s B )  0s 
16 12 15 mpbird
 |-  ( ( ( ( A e. No /\ 0s  ( A x.s B ) 
17 simp1l
 |-  ( ( ( A e. No /\ 0s  A e. No )
18 17 7 mulscld
 |-  ( ( ( A e. No /\ 0s  ( A x.s C ) e. No )
19 sltirr
 |-  ( ( A x.s C ) e. No -> -. ( A x.s C ) 
20 18 19 syl
 |-  ( ( ( A e. No /\ 0s  -. ( A x.s C ) 
21 oveq2
 |-  ( B = C -> ( A x.s B ) = ( A x.s C ) )
22 21 breq1d
 |-  ( B = C -> ( ( A x.s B )  ( A x.s C ) 
23 22 notbid
 |-  ( B = C -> ( -. ( A x.s B )  -. ( A x.s C ) 
24 20 23 syl5ibrcom
 |-  ( ( ( A e. No /\ 0s  ( B = C -> -. ( A x.s B ) 
25 24 con2d
 |-  ( ( ( A e. No /\ 0s  ( ( A x.s B )  -. B = C ) )
26 25 imp
 |-  ( ( ( ( A e. No /\ 0s  -. B = C )
27 17 6 mulscld
 |-  ( ( ( A e. No /\ 0s  ( A x.s B ) e. No )
28 sltasym
 |-  ( ( ( A x.s B ) e. No /\ ( A x.s C ) e. No ) -> ( ( A x.s B )  -. ( A x.s C ) 
29 27 18 28 syl2anc
 |-  ( ( ( A e. No /\ 0s  ( ( A x.s B )  -. ( A x.s C ) 
30 29 imp
 |-  ( ( ( ( A e. No /\ 0s  -. ( A x.s C ) 
31 simpl1l
 |-  ( ( ( ( A e. No /\ 0s  A e. No )
32 31 adantr
 |-  ( ( ( ( ( A e. No /\ 0s  A e. No )
33 simpll2
 |-  ( ( ( ( ( A e. No /\ 0s  B e. No )
34 simpll3
 |-  ( ( ( ( ( A e. No /\ 0s  C e. No )
35 33 34 subscld
 |-  ( ( ( ( ( A e. No /\ 0s  ( B -s C ) e. No )
36 simpl1r
 |-  ( ( ( ( A e. No /\ 0s  0s 
37 36 adantr
 |-  ( ( ( ( ( A e. No /\ 0s  0s 
38 simpr
 |-  ( ( ( ( ( A e. No /\ 0s  0s 
39 32 35 37 38 mulsgt0d
 |-  ( ( ( ( ( A e. No /\ 0s  0s 
40 32 33 34 subsdid
 |-  ( ( ( ( ( A e. No /\ 0s  ( A x.s ( B -s C ) ) = ( ( A x.s B ) -s ( A x.s C ) ) )
41 40 breq2d
 |-  ( ( ( ( ( A e. No /\ 0s  ( 0s  0s 
42 18 ad2antrr
 |-  ( ( ( ( ( A e. No /\ 0s  ( A x.s C ) e. No )
43 27 ad2antrr
 |-  ( ( ( ( ( A e. No /\ 0s  ( A x.s B ) e. No )
44 42 43 posdifsd
 |-  ( ( ( ( ( A e. No /\ 0s  ( ( A x.s C )  0s 
45 41 44 bitr4d
 |-  ( ( ( ( ( A e. No /\ 0s  ( 0s  ( A x.s C ) 
46 39 45 mpbid
 |-  ( ( ( ( ( A e. No /\ 0s  ( A x.s C ) 
47 30 46 mtand
 |-  ( ( ( ( A e. No /\ 0s  -. 0s 
48 simpl3
 |-  ( ( ( ( A e. No /\ 0s  C e. No )
49 simpl2
 |-  ( ( ( ( A e. No /\ 0s  B e. No )
50 48 49 posdifsd
 |-  ( ( ( ( A e. No /\ 0s  ( C  0s 
51 47 50 mtbird
 |-  ( ( ( ( A e. No /\ 0s  -. C 
52 sltlin
 |-  ( ( B e. No /\ C e. No ) -> ( B 
53 49 48 52 syl2anc
 |-  ( ( ( ( A e. No /\ 0s  ( B 
54 26 51 53 ecase23d
 |-  ( ( ( ( A e. No /\ 0s  B 
55 16 54 impbida
 |-  ( ( ( A e. No /\ 0s  ( B  ( A x.s B )