| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1l |
|- ( ( ( ( A e. No /\ 0s A e. No ) |
| 2 |
|
simpl3 |
|- ( ( ( ( A e. No /\ 0s C e. No ) |
| 3 |
|
simpl2 |
|- ( ( ( ( A e. No /\ 0s B e. No ) |
| 4 |
2 3
|
subscld |
|- ( ( ( ( A e. No /\ 0s ( C -s B ) e. No ) |
| 5 |
|
simpl1r |
|- ( ( ( ( A e. No /\ 0s 0s |
| 6 |
|
simp2 |
|- ( ( ( A e. No /\ 0s B e. No ) |
| 7 |
|
simp3 |
|- ( ( ( A e. No /\ 0s C e. No ) |
| 8 |
6 7
|
posdifsd |
|- ( ( ( A e. No /\ 0s ( B 0s |
| 9 |
8
|
biimpa |
|- ( ( ( ( A e. No /\ 0s 0s |
| 10 |
1 4 5 9
|
mulsgt0d |
|- ( ( ( ( A e. No /\ 0s 0s |
| 11 |
1 2 3
|
subsdid |
|- ( ( ( ( A e. No /\ 0s ( A x.s ( C -s B ) ) = ( ( A x.s C ) -s ( A x.s B ) ) ) |
| 12 |
10 11
|
breqtrd |
|- ( ( ( ( A e. No /\ 0s 0s |
| 13 |
1 3
|
mulscld |
|- ( ( ( ( A e. No /\ 0s ( A x.s B ) e. No ) |
| 14 |
1 2
|
mulscld |
|- ( ( ( ( A e. No /\ 0s ( A x.s C ) e. No ) |
| 15 |
13 14
|
posdifsd |
|- ( ( ( ( A e. No /\ 0s ( ( A x.s B ) 0s |
| 16 |
12 15
|
mpbird |
|- ( ( ( ( A e. No /\ 0s ( A x.s B ) |
| 17 |
|
simp1l |
|- ( ( ( A e. No /\ 0s A e. No ) |
| 18 |
17 7
|
mulscld |
|- ( ( ( A e. No /\ 0s ( A x.s C ) e. No ) |
| 19 |
|
sltirr |
|- ( ( A x.s C ) e. No -> -. ( A x.s C ) |
| 20 |
18 19
|
syl |
|- ( ( ( A e. No /\ 0s -. ( A x.s C ) |
| 21 |
|
oveq2 |
|- ( B = C -> ( A x.s B ) = ( A x.s C ) ) |
| 22 |
21
|
breq1d |
|- ( B = C -> ( ( A x.s B ) ( A x.s C ) |
| 23 |
22
|
notbid |
|- ( B = C -> ( -. ( A x.s B ) -. ( A x.s C ) |
| 24 |
20 23
|
syl5ibrcom |
|- ( ( ( A e. No /\ 0s ( B = C -> -. ( A x.s B ) |
| 25 |
24
|
con2d |
|- ( ( ( A e. No /\ 0s ( ( A x.s B ) -. B = C ) ) |
| 26 |
25
|
imp |
|- ( ( ( ( A e. No /\ 0s -. B = C ) |
| 27 |
17 6
|
mulscld |
|- ( ( ( A e. No /\ 0s ( A x.s B ) e. No ) |
| 28 |
|
sltasym |
|- ( ( ( A x.s B ) e. No /\ ( A x.s C ) e. No ) -> ( ( A x.s B ) -. ( A x.s C ) |
| 29 |
27 18 28
|
syl2anc |
|- ( ( ( A e. No /\ 0s ( ( A x.s B ) -. ( A x.s C ) |
| 30 |
29
|
imp |
|- ( ( ( ( A e. No /\ 0s -. ( A x.s C ) |
| 31 |
|
simpl1l |
|- ( ( ( ( A e. No /\ 0s A e. No ) |
| 32 |
31
|
adantr |
|- ( ( ( ( ( A e. No /\ 0s A e. No ) |
| 33 |
|
simpll2 |
|- ( ( ( ( ( A e. No /\ 0s B e. No ) |
| 34 |
|
simpll3 |
|- ( ( ( ( ( A e. No /\ 0s C e. No ) |
| 35 |
33 34
|
subscld |
|- ( ( ( ( ( A e. No /\ 0s ( B -s C ) e. No ) |
| 36 |
|
simpl1r |
|- ( ( ( ( A e. No /\ 0s 0s |
| 37 |
36
|
adantr |
|- ( ( ( ( ( A e. No /\ 0s 0s |
| 38 |
|
simpr |
|- ( ( ( ( ( A e. No /\ 0s 0s |
| 39 |
32 35 37 38
|
mulsgt0d |
|- ( ( ( ( ( A e. No /\ 0s 0s |
| 40 |
32 33 34
|
subsdid |
|- ( ( ( ( ( A e. No /\ 0s ( A x.s ( B -s C ) ) = ( ( A x.s B ) -s ( A x.s C ) ) ) |
| 41 |
40
|
breq2d |
|- ( ( ( ( ( A e. No /\ 0s ( 0s 0s |
| 42 |
18
|
ad2antrr |
|- ( ( ( ( ( A e. No /\ 0s ( A x.s C ) e. No ) |
| 43 |
27
|
ad2antrr |
|- ( ( ( ( ( A e. No /\ 0s ( A x.s B ) e. No ) |
| 44 |
42 43
|
posdifsd |
|- ( ( ( ( ( A e. No /\ 0s ( ( A x.s C ) 0s |
| 45 |
41 44
|
bitr4d |
|- ( ( ( ( ( A e. No /\ 0s ( 0s ( A x.s C ) |
| 46 |
39 45
|
mpbid |
|- ( ( ( ( ( A e. No /\ 0s ( A x.s C ) |
| 47 |
30 46
|
mtand |
|- ( ( ( ( A e. No /\ 0s -. 0s |
| 48 |
|
simpl3 |
|- ( ( ( ( A e. No /\ 0s C e. No ) |
| 49 |
|
simpl2 |
|- ( ( ( ( A e. No /\ 0s B e. No ) |
| 50 |
48 49
|
posdifsd |
|- ( ( ( ( A e. No /\ 0s ( C 0s |
| 51 |
47 50
|
mtbird |
|- ( ( ( ( A e. No /\ 0s -. C |
| 52 |
|
sltlin |
|- ( ( B e. No /\ C e. No ) -> ( B |
| 53 |
49 48 52
|
syl2anc |
|- ( ( ( ( A e. No /\ 0s ( B |
| 54 |
26 51 53
|
ecase23d |
|- ( ( ( ( A e. No /\ 0s B |
| 55 |
16 54
|
impbida |
|- ( ( ( A e. No /\ 0s ( B ( A x.s B ) |