Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of Conway p. 19. (Contributed by Scott Fenton, 6-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sltmuld.1 | |- ( ph -> A e. No ) |
|
sltmuld.2 | |- ( ph -> B e. No ) |
||
sltmuld.3 | |- ( ph -> C e. No ) |
||
sltmuld.4 | |- ( ph -> D e. No ) |
||
sltmuld.5 | |- ( ph -> A |
||
sltmuld.6 | |- ( ph -> C |
||
Assertion | sltmuld | |- ( ph -> ( ( A x.s D ) -s ( A x.s C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltmuld.1 | |- ( ph -> A e. No ) |
|
2 | sltmuld.2 | |- ( ph -> B e. No ) |
|
3 | sltmuld.3 | |- ( ph -> C e. No ) |
|
4 | sltmuld.4 | |- ( ph -> D e. No ) |
|
5 | sltmuld.5 | |- ( ph -> A |
|
6 | sltmuld.6 | |- ( ph -> C |
|
7 | sltmul | |- ( ( ( A e. No /\ B e. No ) /\ ( C e. No /\ D e. No ) ) -> ( ( A |
|
8 | 1 2 3 4 7 | syl22anc | |- ( ph -> ( ( A |
9 | 5 6 8 | mp2and | |- ( ph -> ( ( A x.s D ) -s ( A x.s C ) ) |