Metamath Proof Explorer


Theorem sltmuld

Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of Conway p. 19. (Contributed by Scott Fenton, 6-Mar-2025)

Ref Expression
Hypotheses sltmuld.1
|- ( ph -> A e. No )
sltmuld.2
|- ( ph -> B e. No )
sltmuld.3
|- ( ph -> C e. No )
sltmuld.4
|- ( ph -> D e. No )
sltmuld.5
|- ( ph -> A 
sltmuld.6
|- ( ph -> C 
Assertion sltmuld
|- ( ph -> ( ( A x.s D ) -s ( A x.s C ) ) 

Proof

Step Hyp Ref Expression
1 sltmuld.1
 |-  ( ph -> A e. No )
2 sltmuld.2
 |-  ( ph -> B e. No )
3 sltmuld.3
 |-  ( ph -> C e. No )
4 sltmuld.4
 |-  ( ph -> D e. No )
5 sltmuld.5
 |-  ( ph -> A 
6 sltmuld.6
 |-  ( ph -> C 
7 sltmul
 |-  ( ( ( A e. No /\ B e. No ) /\ ( C e. No /\ D e. No ) ) -> ( ( A  ( ( A x.s D ) -s ( A x.s C ) ) 
8 1 2 3 4 7 syl22anc
 |-  ( ph -> ( ( A  ( ( A x.s D ) -s ( A x.s C ) ) 
9 5 6 8 mp2and
 |-  ( ph -> ( ( A x.s D ) -s ( A x.s C ) )